No 2 (2021)

Full Issue

The research of the processes of formation of porous non-ferrous metals

Kovtunov A.I., Semistenov D.A., Khokhlov Y.Y., Myamin S.V.

Abstract

Foamed metals are promising materials with a unique combination of mechanical and operational properties: low specific gravity, low thermal conductivity, ability to absorb acoustic and electromagnetic vibrations, and the ability to deform under a constant load. Currently, the most used methods for producing foamed aluminum and foamed magnesium are methods based on mixing gas or porophore into molten aluminum and forming a porous structure during the solidification of the aluminum melt. An alternative to this technology is the formation of a porous structure through the use of soluble granules that pre-fill the mold and after impregnating the granules with molten metal and solidifying the castings, they are leached. The work aims to determine the influence of casting modes and the size of granules on the depth of impregnation of granular filling with metal melt during the formation of porous aluminum castings. The authors proposed the technique for calculating the depth of impregnation of granular filling when producing castings of porous non-ferrous metals based on the calculation of melt cooling when moving along the thin-walled channel. The calculations made it possible to determine the depth of impregnation and establish the allowable wall thickness of the casting of porous aluminum, depending on the size of the granules used, the speed of the melt in a form, the mold temperature, and the temperature of molten aluminum. The study identified that to increase the depth of impregnation and obtain porous aluminum castings with thinner walls, it is advisable to increase the diameter of the salt granules and not the temperature and hydrodynamic modes of casting. The authors carried out calculations and identified the influence of the casting regimes and the diameter of the granules on the depth of mold impregnation to obtain porous castings from promising magnesium alloys.

Frontier Materials & Technologies. 2021;(2):9-17
pages 9-17 views

In-situ study of the corrosion process of biodegradable magnesium alloys

Myagkikh P.N., Merson E.D., Poluyanov V.A., Merson D.L.

Abstract

The interest in magnesium and its alloys considerably increases in recent years. These materials have a unique complex of properties: light-weight and strength make magnesium alloys promising structural materials for the aircraft industry and space application, and ability to reabsorb in vivo conditions and good biocompatibility allow producing biodegradable surgical implants of magnesium alloys, which can resorb in a human body without detriment to health. The materials for such demanding applications require detailed investigation of their properties, such as corrosion, including the kinetics of corrosion rate and staging of corrosion damage on the surface. To obtain a full view of the corrosion process, in addition to common ex-situ methods such as the corrosion rate evaluating using the weight loss method and the morphology corrosion damage investigation by optical or confocal laser scanning microscopy (CLSM), it is important to use modern in-situ methods. In-situ methods allow obtaining data immediately during the experiment and not after its completion. The authors carried out a comprehensive study of the corrosion process of the commercial ZK60 and AZ31 magnesium alloys in the simulated human-body environment (temperature, corrosion media composition, circulation of corrosion media) using in-situ methods, including hydrogen evolution corrosion rate evaluating and video-observation of a sample surface. The results show that AZ31 alloy is more corrosion-resistant than ZK60 alloy. Moreover, AZ31 alloy is prone to filiform surface corrosion, and ZK60 alloy exhibits severe pitting corrosion. Based on the comparison of the data obtained by in-situ and ex-situ methods, the authors concluded on their main differences and features.

Frontier Materials & Technologies. 2021;(2):18-25
pages 18-25 views

Special aspects of strain localization during thermal power processing

Rastorguev D.A., Semenov K.O.

Abstract

The paper considers the issues of ensuring the uniformity of strain of axisymmetric long-dimensional samples during thermal force processing (TFP), which is the simultaneous application of force and temperature effects for comprehensive improvement of geometric characteristics and physical and mechanical parameters of the workpiece material. This technology is used at various stages of technological processes of parts manufacturing, but its main task is to ensure the axis straightness and the specified distribution of residual technological stresses at the procuring stage. The disadvantage of TFP is that the axial deformation proceeds nonuniformly along the workpiece axis. The core process parameter is the deformation, the control of which is a key factor ensuring the TFP efficiency. The authors studied the plastic strain distribution over the sections of long-length workpieces with different deformation degrees. The study involved the assessment of strain uniformity over the workpiece sections, taking into account the stage of the stress-strain relation at the end of the loading cycle. Based on the concepts of plastic deformation as an auto-wave process, the authors selected the range of technological modes corresponding to the most uniform strain distribution along the workpiece axis with complete processing of the entire workpiece volume. This range corresponds to the stage of parabolic hardening of the plastic flow curve with the formation of the maximum number of stationary zones of localized plasticity. Rheological modeling allows identifying the control points that specify the boundaries of the plastic flow curve stages at various loading parameters, including temperature. To improve the reliability of determining the actual deformation under production conditions, the authors proposed modernizing the TFP process monitoring method by fixing the deformation on a limited workpiece section using the optical technique. The statistical analysis of the strain distribution over the sections for the samples confirms the correctness of this approach. The application of the proposed control method will ensure the most uniform distribution of plastic deformation due to the reliable enter of the workpiece deformation to the range of strain values corresponding to the stage of parabolic hardening of the plastic flow curve.

Frontier Materials & Technologies. 2021;(2):26-34
pages 26-34 views

Innovative approach to the development of manufacturing procedures of producing goods in a multiproduct manufacture

Reshetnikova E.P., Bochkarev P.Y.

Abstract

The relevance of the study is in the solution of an important problem – the improvement of the development of engineering procedures for producing goods within the production systems of conventional machine-building enterprises performing the transition to automation and intellectualization of their production cycle. To solve the above-stated task, the authors propose an innovative approach involving the development of efficient manufacturing procedures of producing goods by a multiproduct production system based on making effective project technology solutions. The suggested method of designing effective manufacturing procedures for producing goods by a multiproduct production system is implemented in the System of Computer-Aided Planning of Manufacturing Procedures developed by the authors. The System of Computer-Aided Planning of Manufacturing Procedures is a modern tool for automation of engineering process preparation corresponding to the relevant concept of production digitalization. The set of monitoring and measuring procedures developed by the authors and promoting the improvement of the System of Computer-Aided Planning of Manufacturing Procedures is aimed at the modernization of machining productions with the traditional production cycle and supporting their digital transformation process. The set of monitoring and measuring procedures performs the automated designing of efficient individual manufacturing procedures within a small-series production based on the information about actual dimensional parameters of the part blank surfaces at the initial stage of creation of a manufacturing procedure and based on the integration into the manufacturing procedure structure of an efficient set of monitoring and measuring tools formed on the base of the complex of monitoring and measuring procedures to evaluate the prescribed accuracy of part production. The paper presents methodological and algorithmic provisions of implementing complex of monitoring and measuring procedures, which include the development of the technique of the parts’ coordinate metrology serving as a structural element of an efficient manufacturing procedure and the algorithm of formation of the efficient set of monitoring and measuring tools when designing efficient manufacturing procedure.

Frontier Materials & Technologies. 2021;(2):35-46
pages 35-46 views

The application of acoustic emission method for ultrasonic fatigue testing monitoring

Seleznev M.N., Vinogradov A.Y.

Abstract

The ultrasonic fatigue testing (USFT) is an effective method for rapid determination of the fatigue properties of structural materials under high cycle (≥106 cycles) loading. However, the occurrence and accumulation of fatigue damage with this test method remain uncertain due to the limitations of the existing measurement methods. Currently used monitoring methods allow detecting the fatigue cracks, but only in the late stages of failure. Despite the superior sensitivity to localized processes in materials, the use of the acoustic emission (AE) method in ultrasonic testing is extremely difficult due to the presence of resonant noise. This work aimed to suppress resonant noise and extract the signal for early detection of fatigue damage. The authors tested the samples of the AlSi9Cu3 aluminum alloy under the asymmetric cyclic loading (R=0.1) at a resonant frequency of 19.5 kHz with a non-threshold AE registration. The fracture surfaces were analyzed by electron and optical microscopy. The authors processed AE by two different methods: (1) the digital filtering method consisted of detecting resonant noise and removing it from the spectrum; (2) the φ-function method consisted of differentiating the spectrogram by time. The processed spectrograms were integrated by the frequency with further extraction of the AE events using the threshold method. The digital filtering method revealed a correlation between AE signals and fatigue damage, whereas the undamaged control sample showed no signals. The φ-function technique demonstrated ambiguous results, showing high AE activity on the control sample.

Frontier Materials & Technologies. 2021;(2):47-56
pages 47-56 views

Effective power of a constricted welding arc with heteropolar current pulses

Sidorov V.P., Sovetkin D.E.

Abstract

The authors reviewed the research works on the effective power of direct and reverse polarity welding arcs with a non-consumable electrode in argon. The study shows that it is difficult to use the arc effective efficiency for effective power determination. It applies to the constricted arc more than to the free one. Based on data analysis for the effective power of polarities and the effective efficiency of a constricted arc burning toward the cooper heat flow calorimeter, the authors calculated the specific effective power of polarities and arc stresses. The maximum values are 23.2 W/A for the reverse polarity arc; and 14.2 W/A for the direct polarity arc. The study identified that the decrease in the specific effective power of polarities at the current increase within 100–150 A is well described by linear dependencies. With the current increase, there is a linear decrease in the direct polarity arc stress, while the reverse polarity arc stress remains constant. The spread of data for the specific effective power of polarities is about two times less than the spread for effective efficiency. Using a 2D mathematical model of the constricted arc column in a closed area, the authors calculated the power absorbed by plasma-forming argon and nozzle walls. As a result, the authors obtained the dependencies of the power transferred by argon on the nozzle channel length and the arc current. The specific effective power of argon flow for analyzed current densities and argon consumption shows poor dependence on the arc current and is equal to 5.5 W/A approximately. The power contribution of plasma-forming argon to the effective power of the constricted arc increases with the current increase.

Frontier Materials & Technologies. 2021;(2):57-66
pages 57-66 views

The influence of rolling and high-pressure torsion in the Bridgman chamber on the quantitative characteristics of shear bands in an amorphous Zr-based alloy

Khriplivets I.A.

Abstract

Amorphous alloys based on metal components demonstrate a unique ability to realize plastic deformation under the influence of external mechanical stresses. Influenced by substantial degrees of plastic deformation in alloys, one can observe shear bands (SB) in the form of rough lines on the polished surface of the sample. The concept of shear band formation in amorphous metallic glasses varies greatly from plastic deformation processes in crystalline metals and alloys. Unlike crystalline metals, amorphous metallic glasses can exist in a spectrum of structural states with accompanying mechanical, thermodynamic, and physical properties of materials. The formation and evolution of shear bands control the fluidity and plasticity of almost all metallic glasses at room temperature, and in many cases, the formation of dominant shear bands rapidly leads to failure. The literature does not contain any rigorous quantitative description of SB main parameters, which could adequately describe in the analytical form the process of plastic deformation of amorphous alloys, similar to the dislocation and disclination theories of plastic deformation of crystals. An open question remains how the transition from macroscopic deformation to severe plastic deformations of amorphous alloys affects the key SB characteristics. In this work, using the method of optical profilometry, the author studied in detail the quantitative characteristics of the steps formed by shear bands on the surface of deformed samples of the massive amorphous alloy Zr60Ti2Nb2Cu18.5Ni7.5Al10 after high-pressure torsion (HPT) and after rolling. The study identified that the design of shear bands depends on the deformation method and showed that the magnitude of deformation had the controlling effect on the shear bands thickness (the height of the steps). The transition from deformation by rolling (e=0.4) to plastic deformation during HPT (e=2.6) leads to the threefold increase in the power of shear bands and the average distance between them.

Frontier Materials & Technologies. 2021;(2):67-74
pages 67-74 views

Microstructure and strength of joints of nickel sheets produced by ultrasonic welding

Shayakhmetova E.R., Murzinova M.A., Nazarov A.A.

Abstract

Ultrasonic welding (USW) is one of the methods for producing solid-phase joints of thin metal sheets, which in the future can be used to obtain laminated composite materials, for additive manufacturing and renovation of metallic articles. The quality of joints depends on both the processing conditions and the properties of welded metals and alloys. At present, the USW conditions, the properties, and structure of weld joints of strong metals, in particular, of nickel, are underexplored. In this work, the authors studied the influence of the compressive load magnitude on the lap shear strength and the structure of joints of annealed nickel sheets with a thickness of 0.5 mm produced by spot USW. The authors carried out USW at a vibration frequency of 20 kHz with an amplitude of 15 μm, the time of welding was equal to 2 s. The compressive load magnitude was varied from 3.5 to 7 kN. The study showed that with an increase in the compressive load in the considered range of values, the strength of weld joints increased, reached a maximum, and then decreased. The joints obtained at the compressive load of 6 kN demonstrated the highest lap shear strength of 1950 N. A zone of thermomechanical influence with a gradient microstructure is observed near the contact of the welded surfaces. In a layer with a thickness of 10–20 mm, the initial coarse-grained structure of nickel is transformed into an ultra-fine-grained one with a grain size of less than 1 mm. The ultra-fine-grained layer neighbors on crystallites, the size of which is several micrometers and increases with a distance from the contact surface of welded sheets. The authors compared the results of mechanical lap shear tests and structural studies with the data obtained after ultrasonic welding of nickel, aluminum, and copper alloys.

Frontier Materials & Technologies. 2021;(2):75-81
pages 75-81 views

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies