Influence of high-pressure torsion on the structure and mechanical properties of Zn–1%Fe–5%Mg zinc alloy


Cite item

Abstract

Currently, scientists search for new materials for temporary implants that can dissolve in the body, which leads to the fact that there is no need for repeated surgery. In the last decade, scientific interest has focused on zinc-based materials because, unlike other metals, it has suitable corrosion rates and good biocompatibility. The paper describes an experiment for the study of the influence of deformation on the microstructure, strength and corrosion properties of an alloy of the Zn–Fe–Mg system. The authors carried out energy dispersive analysis and calculation of the volume fraction of the second phase of the Zn–Fe–Mg zinc alloy. The corrosion properties of the Zn–Fe–Mg zinc alloy with different microstructures (before and after high-pressure torsion) were studied using the gravimetric method under conditions simulating conditions inside a living organism (temperature, corrosive environment composition). During the tests, the corrosion mechanism was determined, its rate and mass loss of the samples were calculated. The relief of the corrosion surface was studied using scanning electron microscopy. It has been found that the destruction of the material in a corrosive environment occurs through a matrix containing the active Mg metal. The results of calculations of the corrosion rate for the original sample and samples subjected to high-pressure torsion differed due to a more even distribution of second phase particles during severe plastic deformation. In this work, by alloying zinc with iron and magnesium, as well as using high-pressure torsion, it was possible to increase the microhardness of the samples to 239.6±8 HV, which is a high indicator for zinc alloys.

About the authors

Elmira D. Abdrakhmanova

Ufa University of Science and Technology

Email: elmira.abdr2019@mail.ru
ORCID iD: 0009-0009-2775-7488

student

Russian Federation, 450076, Russia, Ufa, Zaki Validi Street, 32

Elvira D. Khafizova

Ufa University of Science and Technology

Author for correspondence.
Email: KhafizovaED@uust.ru
ORCID iD: 0000-0002-4618-412X

PhD (Engineering), assistant professor of Chair of Materials Science and Physics of Metals, senior researcher of Scientific Research Laboratory “Metals and Alloys under Extreme Impacts”

Russian Federation, 450076, Russia, Ufa, Zaki Validi Street, 32

Milena V. Polenok

Ufa University of Science and Technology

Email: renaweiwei.179@mail.ru
ORCID iD: 0000-0001-9774-1689

student

Russian Federation, 450076, Russia, Ufa, Zaki Validi Street, 32

Ruslan K. Nafikov

Ufa University of Science and Technology

Email: nafickov.ruslan2011@yandex.ru
ORCID iD: 0000-0003-1280-6258

junior researcher of Scientific Research Laboratory “Metals and Alloys under Extreme Impacts”

Russian Federation, 450076, Russia, Ufa, Zaki Validi Street, 32

Elena A. Korznikova

Ufa University of Science and Technology

Email: elena.a.korznikova@gmail.com
ORCID iD: 0000-0002-5975-4849

Doctor of Sciences (Physics and Mathematics), Professor, professor of Chair of Materials Science and Physics of Metals, Head of Scientific Research Laboratory “Metals and Alloys under Extreme Impacts”

Russian Federation, 450076, Russia, Ufa, Zaki Validi Street, 32

References

  1. Kogan S., Sood A., Granick M.S. Zinc and Wound Healing: A Review of Zinc Physiology and Clinical Applications. Wounds, 2017, vol. 29, no. 4, pp. 102–106.
  2. Lin Mao, Li Shen, Jiahui Chen et al. A promising biodegradable magnesium alloy suitable for clinical vascular stent application. Scientific Reports, 2017, vol. 7, article number 46343. doi: 10.1038/srep46343.
  3. Yang Hongtao, Jia Bo, Zhang Zechuan, Qu Xinhua, Li Guannan, Lin Wenjiao, Zhu Donghui, Dai Kerong, Zheng Yufeng. Alloying design of biodegradable zinc as promising bone implants for load-bearing applications. Nature Communications, 2020, vol. 11, article number 401. doi: 10.1038/s41467-019-14153-7.
  4. Shi Zhangzhi, Li Changheng, Li Meng, Li Xiangmin, Wang Luning. Second phase refining induced optimization of Fe alloying in Zn: Significantly enhanced strengthening effect and corrosion uniformity. International Journal Minerals, Metallurgy and Materials, 2022, vol. 29, pp. 796–806. doi: 10.1007/s12613-022-2468-6.
  5. Mita K., Ikeda T., Maeda M. Phase diagram study of Fe–Zn intermetallics. Journal of Phase Equilibria, 2001, vol. 22, pp. 122–125. doi: 10.1361/105497101770338978.
  6. Su Yingchao, Fu Jiayin, Lee Wonsae, Du Shaokang, Qin Yi-Xian, Zheng Yufeng, Wang Yadong, Zhu Donghui. Improved mechanical, degradation, and biological perfomaces of Zn–Fe alloys as bioresorbable implants. Bioactive Materials, 2022, vol. 17, pp. 334–343. doi: 10.1016/j.bioactmat.2021.12.030.
  7. Shao Xiaoxi, Wang Xiang, Xu Fangfang et al. In vivo biocompatibility and degradability of a Zn–Mg–Fe alloy osteosynthesis system // Bioactive Materials. 2022. Vol. 7. P. 154–166. doi: 10.1016/j.bioactmat.2021.05.012.
  8. Mostaed E., Sikora-Jasinska M., Mostaed A., Loffredo S., Demir A.G., Previtali B., Mantovani D., Beanland R., Vedani M. Novel Zn-based alloys for biodegradable stent applications: Design, development and in vitro degradation // Journal of the Mechanical Behavior of Biomedical Materials. 2016. Vol. 60. P. 581–602. doi: 10.1016/j.jmbbm.2016.03.018.
  9. Vojtěch D., Kubásek J., Šerák J., Novák P. Mechanical and corrosion properties of newly developed biodegradable Zn-based alloys for bone fixation. Acta Biomaterialia, 2011, vol. 7, no. 9, pp. 3515–3522. doi: 10.1016/j.actbio.2011.05.008.
  10. Valiev R.Z., Islamgaliev R.K., Alexandrov I.V. Bulk nanostructured materials from severe plastic deformation. Progress in Materials Science, 2000, vol. 45, no. 2, pp. 103–189. doi: 10.1016/S0079-6425(99)00007-9.
  11. Li Baoping, Dong Anping, Zhu Guoliang, Chu Shuangjie, Qian Hongwei, Hu Chengjie, Sun Baode, Wang Jun. Investigation of the corrosion behaviors of continuously hot-dip galvanizing Zn–Mg coating. Surface and Coatings Technology, 2012, vol. 206, no. 19-20, pp. 3989–3999. doi: 10.1016/j.surfcoat.2012.03.079.
  12. Prosek T., Nazarov A., Bexell U., Thierry D., Serak J. Corrosion mechanism of model zinc–magnesium alloys in atmospheric conditions. Corrosion Science, 2008, vol. 50, no. 8, pp. 2216–2231. doi: 10.1016/j.corsci.2008.06.008.
  13. Xue Penghao, Ma Minglong, Li Yongjun, Li Xinggang, Yuan Jiawei, Shi Guoliang, Wang Kaikun, Zhang Kui. Microstructure, Hot Deformation Behavior, and Recrystallization Behavior of Zn–1Fe–1Mg Alloy under Isothermal Compression. Materials, 2021, vol. 14, no. 7, article number 1735. doi: 10.3390/ma14071735.
  14. Xue Penghao, Ma Minglong, Li Yongjun, Li Xinggang, Yuan Jiawei, Shi Guoliang, Wang Kaikun, Zhang Kui. Microstructure, Mechanical Properties, and In Vitro Corrosion Behavior of Biodegradable Zn–1Fe–xMg Alloy. Materials, 2020, vol. 13, no. 21, article number 4835. doi: 10.3390/ma13214835.
  15. Polenok M.V., Khafizova E.D., Islamgaliev R.K. The influence of severe plastic deformation on mechanical properties of pure zinc. Frontier Materials & Technologies, 2022, no. 3-2, pp. 25–31. doi: 10.18323/2782-4039-2022-3-2-25-31.
  16. Mostaed E., Sikora-Jasinska M., Drelich J.W., Vedani M. Zinc-based alloys for degradable vascular stent application. Acta Biomaterialia, 2018, vol. 71, pp. 1–23. doi: 10.1016/j.actbio.2018.03.005.
  17. Razumov I.K., Ermakov A.Y., Gornostyrev Yu.N., Straumal B.B. Nonequilibrium phase transformations in alloys under severe plastic deformation. Physics-Uspekhi, 2020, vol. 63, no. 8, pp. 733–757. DOI: doi: 10.3367/UFNe.2019.10.038671.
  18. Zhang Xiaoge Gregory. Corrosion potential and corrosion current. Corrosion and Electrochemistry of Zinc. Boston, Springer Publ., 1996, pp. 125–156. doi: 10.1007/978-1-4757-9877-7_5.
  19. Khudododova G.D., Kulyasova O.B., Islamgaliev R.K. Strength and corrosion resistance of the UFG Mg-Zn-Ca alloy. Nanoindustriya, 2022, vol. 15, no. 7-8, pp. 426–433. doi: 10.22184/1993-8578.2022.15.7-8.426.433.
  20. Byun Jong Min, Yu Jin Min, Kim Dae Kyung, Kim Tae Yeob, Jun Woo Sung, Kim Young Do. Corrosion Behavior of Mg2Zn11 and MgZn2 Single Phases. Korean Journal of Metals and Materials, 2013, vol. 51, no. 6, pp. 413–419. doi: 10.3365/KJMM.2013.51.6.413.
  21. Wątroba M., Mech K., Bednarczyk W., Kawałko J., Marciszko-Wiąckowska M., Marzec M., Shepherd D.E.T., Bała P. Long-term in vitro corrosion behavior of Zn–3Ag and Zn–3Ag–0.5Mg alloys considered for biodegradable implant applications. Materials & Design, 2022, vol. 213, article number110289. doi: 10.1016/j.matdes.2021.110289.
  22. Bowen P.K., Shearier E.R., Shan Zhao, Guillory R.J., Feng Zhao, Goldman J., Drelich J.W. Biodegradable Metals for Cardiovascular Stents: from Clinical Concerns to Recent Zn-Alloys. Advanced Healthcare Materials, 2016, vol. 5, no. 10, pp. 1121–1140. doi: 10.1002/adhm.201501019.
  23. Shi Zhang-Zhi, Gao Xi-Xian, Chen Hong-Ting, Liu Xue-Feng, Li Ang, Zhang Hai-Jun, Wang Lu-Ning. Enhancement in mechanical and corrosion resistance properties of a biodegradable Zn–Fe alloy through second phase refinement. Materials Science and Engineering: C, 2020, vol. 116, article number 111197. doi: 10.1016/j.msec.2020.111197.
  24. Yan Zhaoming, Zhu Jiaxuan, Zhang Zhimin, Wang Qiang, Xue Yong. The microstructural, textural, and mechanical effects of high-pressure torsion processing on Mg alloys: A review. Frontiers in Materials, 2022, vol. 9, article number 964992. doi: 10.3389/fmats.2022.964992.
  25. Myagkikh P.N., Merson E.D., Poluyanov V.A., Merson D.L. The dependence of the biodegradable ZX10 alloy corrosion process on the structural factors and local pH level. Frontier Materials & Technologies, 2023, no. 2, pp. 59–76. doi: 10.18323/2782-4039-2023-2-64-3.
  26. Vinogradov A., Merson E., Myagkikh P., Linderov M., Brilevsky A., Merson D. Attaining High Functional Performance in Biodegradable Mg-Alloys: An Overview of Challenges and Prospects for the Mg–Zn–Ca System. Materials, 2023, vol. 16, no. 3, article number 1324. doi: 10.3390/ma16031324.
  27. Yao Caizhen, Wang Zichao, Tay See Leng, Zhu Tianping, Gao Wei. Effects of Mg on microstructure and corrosion properties of Zn–Mg alloy. Journal of Alloys and Compounds, 2014, vol. 602, pp. 101–107. doi: 10.1016/j.jallcom.2014.03.025.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Abdrakhmanova E.D., Khafizova E.D., Polenok M.V., Nafikov R.K., Korznikova E.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies