Low-temperature superplastic deformation of the EK79 nickel-based superalloy with the mixed ultrafine-grained microstructure

Cover Page

Cite item

Abstract

One of the most effective ways to increase the processing plasticity of advanced superalloys (heat-resistant nickel-based alloys) is the formation of an ultrafine-grained (UFG) microstructure in bulk semi-finished products. Such a microstructure is a necessary condition for the manifestation of the structural superplasticity effect in the technological processes of manufacturing products from such superalloys. One of the most promising methods for producing UFG microstructures is thermomechanical treatment (TMT) according to the multiple isothermal forging scheme. It has been shown that the EK79 superalloy after TMT, with a gradual decrease in the processing temperature from 0.88 to 0.62 Ts (where Ts is the strengthening phase dissolution temperature) leads to the transformation of the initial microduplex fine-grained microstructure into a mixed UFG microstructure. Such a mixed UFG microstructure consists of: 1) relatively coarse (inherited from the fine-grain microstructure) particles – γ'-phase with a size of 3.0±0.8 μm; 2) γ-grains, and incoherent γ'-phase particles with a size of 0.3–0.5 μm; 3) strengthening coherent intragranular γ'-phase particles with a size of 0.05–0.1 μm, released upon cooling from the TMT temperature to room temperature. During uniaxial compression tests, the EK79 superalloy with such microstructure, demonstrates low-temperature superplasticity in the temperature range of 800–1000 °C. It has been found that an increase in the deformation temperature up to 1000 °C, leads to the increase of γ-phase grains to micron size. The maintenance of superplastic properties in the presence of relatively coarse incoherent particles in the microstructure of the second phase (γ'-phase) is apparently related to the fact that the deformation is localised in the UFG component.

About the authors

Elvina V. Galieva

Institute for Metals Superplasticity Problems of RAS

Email: galieva_elvina_v@mail.ru
ORCID iD: 0000-0002-1074-6274

PhD (Engineering), researcher

Россия, 450001, Russia, Ufa, Stepan Khalturin Street, 39

Ekaterina Yu. Klassman

Institute for Metals Superplasticity Problems of RAS

Author for correspondence.
Email: klassman@mail.ru
ORCID iD: 0000-0003-1984-5137

postgraduate student, engineer

Россия, 450001, Russia, Ufa, Stepan Khalturin Street, 39

Vener A. Valitov

Institute for Metals Superplasticity Problems of RAS

Email: valitov_va@mail.ru
ORCID iD: 0000-0002-1349-6047

Doctor of Sciences (Engineering), leading researcher

Россия, 450001, Russia, Ufa, Stepan Khalturin Street, 39

References

  1. Reed R. The Superalloys: Fundamentals and Applications. Cambridge, Cambridge University Press Publ., 2006. 372 p.
  2. Long Haibo, Mao Shengcheng, Liu Yinong, Zhang Ze, Han Xiaodong. Microstructural and compositional design of Ni-based single crystalline superalloys – A review. Journal of Alloys and Compounds, 2018, vol. 743, pp. 203–220. doi: 10.1016/j.jallcom.2018.01.224.
  3. Pollock T.M., Sammy Tin. Nickel-based superalloys for advanced turbine engines: Chemistry, microstructure, and properties. Journal of Propulsion and Power, 2006, vol. 22, no. 2, pp. 361–374. doi: 10.2514/1.18239.
  4. Satyanarayana D.V.V., Eswara P.N. Nickel-Based Superalloys. Aerospace Materials and Material Technologies, 2016, pp. 199–228. doi: 10.1007/978-981-10-2134-3_9.
  5. Lomberg B.S., Ovsepyan S.V., Bakgradze M.M., Letnikov M.N., Mazlov I.S. The application of new wrought nickel alloys for advanced gas turbine engines. Aviatsionnye materialy, 2017, no. S, pp. 116–129. doi: 10.18577/2071-9140-2017-0-S-116-129.
  6. Mukhtarov S., Karyagin D., Ganeev A., Zainullin R., Shakhov R., Imayev V. The Effect of Forging and Heat Treatment Variables on Microstructure and Mechanical Properties of a Re-Bearing Powder-Metallurgy Nickel Base Superalloy. Metals, 2023, vol. 13, no. 6, article number 1110. doi: 10.3390/met13061110.
  7. Mukhtarov S.K., Imayev V.M., Logunov A.V., Shmotin Yu.N., Mikhailov A.M., Gaisin R.A., Shakhov R.V., Ganeev A.A., Imayev R.M. Recrystallization behavior and mechanical properties of a novel Re-containing nickel-base superalloy. Materials Science and Technology, 2019, vol. 35, no. 13, pp. 1605–1613. doi: 10.1080/02670836.2019.1633726.
  8. Akca E., Gursel A. A Review on Superalloys and IN718 Nickel-Based INCONEL Superalloy. Periodicals of Engineering and Natural Sciences, 2015, vol. 3, no. 1, pp. 15–27. doi: 10.21533/pen.v3i1.43.
  9. Utyashev F.Z., Kaibyshev O.A., Valitov V.A. Method for processing billets from multiphase alloys and the article, patent US no. 6565683 B1, 2003. 14 p.
  10. Mulyukov R.R. Development of principles for the production and study of bulk nanostructured materials at the Institute of Applied Mathematics and Mathematics of the Russian Academy of Sciences. Nanotechnologies in Russia, 2007, vol. 2, no. 7-8, pp. 38–53. EDN: IADHGZ.
  11. Zhilyaev A.P., Pshenichnyuk A.I., Utyashev F.Z., Raab G.I. Superplasticity and Grain Boundaries in Ultrafine-Grained Materials. Cambridge, Woodhead Publishing, 2020. 440 р.
  12. Utyashev F.Z., Sukhorukov R.Yu., Valitov V.A. Theoretical Foundations of the Use of Severe Plastic Deformation for Formation of Ultrafine Grain Structure in Superalloys. Journal of Machinery Manufacture and Reliability, 2021, no. 3, pp. 72–79. doi: 10.3103/S1052618821090144.
  13. Imaev V.M., Mukhtarov Sh.Kh., Logunov A.V., Ganeev A.A., Shakhov R.V., Imaev R.M. Effect of thermomechanical treatment on the microstructure and mechanical properties of a novel heavily alloyed nickel base superalloy. Letters on Materials, 2019, vol. 9, no. 2, pp. 249–254. doi: 10.22226/2410-3535-2019-2-249-254.
  14. Chamanfar A., Valberg H.S., Templin B., Plumeri J.E., Misiolek W.Z. Development and validation of a finite-element model for isothermal forging of a nickel-base superalloy. Materialia, 2019, vol. 6, article number 100319. doi: 10.1016/j.mtla.2019.100319.
  15. Galieva E.V., Klassman E.Yu., Gabbasov R.R., Stepukhov E.M., Valitov V.A. Low-temperature superplastic deformation of EK61 and EP975 wrought nickel-based superalloys with an ultrafine-grained structure. Letters on materials, 2023, vol. 13, no. 1, pp. 79–84. doi: 10.22226/2410-3535-2023-1-79-84.
  16. Padmanabhan K.A., Balasivanandha S.P., Mulyukov R.R., Nazarov A.A., Imayev R.M., Ghosh S.Ch. Superplasticity. Common Basis for a Near-Ubiquitous Phenomenon. Berlin, Springer-Verlag GmbH Publ., 2018. 526 p. doi: 10.1007/978-3-642-31957-0.
  17. Lv Shaomin, Jia Chonglin, He Xinbo, Wan Zhipeng, Li Xinxu, Qu Xuanhui. Superplastic Deformation and Dynamic Recrystallization of a Novel Disc Superalloy GH4151. Materials, 2022, vol. 12, no. 12, article number 3667. doi: 10.3390/ma12223667.
  18. Fedorov A.A., Bespalov A.V., Komarov R.S. Superplasticity of ZHS6-KP heat-resistant nickel alloy at high hydrostatic pressures. Tekhnologiya legkikh splavov, 2022, no. 1, pp. 67–75. doi: 10.24412/0321-4664-2022-1-67-75.
  19. Wen Hongning, Jin Junsong, Tang Xuefeng et al. Systematic analysis of distinct flow characteristics and underlying microstructural evolution mechanisms of a novel fine-grained P/M nickel-based superalloy during isothermal compression. Journal of Materials Science & Technology, 2023, vol. 162, pp. 57–73. doi: 10.1016/j.jmst.2023.03.042.
  20. Lu X.D., Zhang Y.W., Shi S.Y., Wen B., Su X., Du J.H. Hot deformation behavior of hard-to-deform Ni-based Alloy. Journal of Physics: Conference Series, 2021, vol. 1777, article number 012006. doi: 10.1088/1742-6596/1777/1/012006.
  21. Xu Xiao-yan, Ma Xiang-dong, Wang Hong, Ye Zhang, Chang Jian-wei, Xu Yao, Sun Guang-ai, Lu Wei-jie, Gao Yu-kui. Characterization of residual stresses and microstructural features in an Inconel 718 forged compressor disc. Transactions of Nonferrous Metals Society of China, 2019, vol. 29, no. 3, pp. 569–578. doi: 10.1016/S1003-6326(19)64965-4.
  22. Galieva E.V., Akhunova A.Kh., Valitov V.A., Klassman E.Yu. Computer and physical modeling of multiple isothermal forging of EK61 superalloy. Letters on materials, 2022, vol. 12, no. 3, pp. 243–248. doi: 10.22226/2410-3535-2022-3-243-248.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Galieva E.V., Klassman E.Y., Valitov V.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies