Roughness and microhardness of UFG Grade 4 titanium under abrasive-free ultrasonic finishing

Cover Page

Cite item

Full Text

Abstract

Increasing the fatigue resistance of implants is an important scientific and technical problem. One of the solutions to this problem is the high-strength state formation due to the ultrafine-grained (UFG) structure. However, high-strength alloys are characterized by greater sensitivity to stress concentrators and the surface roughness parameter. In turn, implant designs, as a rule, imply the presence of concentrators in the form of various grooves, threaded elements, etc., and the manufacturing technology supposes mechanical processing with an ambiguous effect on a finished product surface. The application of additional surface finishing, for example, abrasive-free ultrasonic finishing (AFUF), is a solution to this problem. This work aims to study the effect of different AFUF modes on the microhardness and roughness of a cylindrical blank made of Grade 4 commercially pure titanium in the UFG state. During the study, the authors assessed the effect of the rotation frequency of a workpiece and the static force of pressing the tool against the processed workpiece on the surface parameters; carried out microstructural studies of the obtained samples. The results showed that processing titanium in the UFG state by the AFUF method leads to a significant increase in the surface microhardness and a decrease in its roughness. For example, depending on the mode, the increase in microhardness can reach from 2 to 3.5 times. The authors investigated the effect of a power level of ultrasonic treatment on roughness and microhardness and considered various variants of surface pretreatment. The study identified that an increase in the speed of rotation of a workpiece reduces the roughness of a machined workpiece, while the microhardness increases.

About the authors

Rashid N. Asfandiyarov

Institute of Physics of Molecules and Crystals of Ufa Federal Research Center of the Russian Academy of Sciences, Ufa;
Ufa State Aviation Technical University, Ufa

Author for correspondence.
Email: a.r.n@list.ru
ORCID iD: 0000-0002-5522-4314

PhD (Engineering), researcher, assistant professor of Chair of Materials Science and Physics of Metals

Россия

Georgy I. Raab

Nosov Magnitogorsk State Technical University, Magnitogorsk

Email: giraab@mail.ru

Doctor of Sciences (Engineering), leading researcher

Россия

Dmitry V. Gunderov

Institute of Physics of Molecules and Crystals of Ufa Federal Research Center of the Russian Academy of Sciences, Ufa;
Ufa State Aviation Technical University, Ufa

Email: dimagun@mail.ru
ORCID iD: 0000-0001-5925-4513

Doctor of Sciences (Physics and Mathematics), leading researcher of the Institute of Physics of Molecules and Crystals, professor of Chair of Materials Science and Physics of Metals

Россия

Denis A. Aksenov

Institute of Physics of Molecules and Crystals of Ufa Federal Research Center of the Russian Academy of Sciences, Ufa;
Ufa State Aviation Technical University, Ufa

Email: aksyonovda@mail.ru
ORCID iD: 0000-0002-2652-2646

junior researcher

Россия

Arseniy G. Raab

Ufa State Aviation Technical University, Ufa

Email: agraab@mail.ru

PhD (Engineering), researcher

Россия

Sofia D. Gunderova

Ufa State Aviation Technical University, Ufa

Email: gynderova@mail.ru

student

Россия

Mariya A. Shishkunova

Ufa State Aviation Technical University, Ufa

Email: shishkunomashaa@gmail.com

graduate student

Россия

References

  1. Kang J.-H., Ko Y.G. Microstructure and mechanical properties of ultrafine grained 5052 Al alloy fabricated by multi-pass differential speed rolling. Journal of Materials Research and Technology, 2022, vol. 19, pp. 2031–2049. doi: 10.1016/j.jmrt.2022.05.196.
  2. Mao Q., Liu Ya., Zhao Y. A review on mechanical properties and microstructure of ultrafine grained metals and alloys processed by rotary swaging. Journal of Alloys and Compounds, 2022, vol. 896, article number 163122. doi: 10.1016/j.jallcom.2021.163122.
  3. Naseri R., Hiradfar H., Shariati M., Kadkhodayan M. A comparison of axial fatigue strength of coarse and ultrafine grain commercially pure titanium produced by ECAP. Archives of Civil and Mechanical Engineering, 2018, vol. 18, no. 3, pp. 755–767. doi: 10.1016/j.acme.2017.12.005.
  4. Valiev R.Z., Zhilyaev A.P., Langdon T.G. Bulk nanostructured materials: Fundamentals and applications. New Jersey, Wiley Publ., 2013. 440 p. doi: 10.1002/9781118742679.
  5. Stolyarov V.V., Valiev R.Z., Zhu Y.T., Lowe T.C. Microstructure and properties of pure Ti processed by ECAP and cold extrusion. Materials Science and Engineering: A, 2001, vol. 303, no. 1-2, pp. 82–89. doi: 10.1016/S0921-5093(00)01884-0.
  6. Raab G.I., Valiev R.Z., Gunderov D.V., Lowe T.C., Misra A., Zhu Y.T. Long-length ultrafine-grained titanium rods produced by ECAP- conform. Materials Science Forum, 2008, vol. 584-586 PART 1, pp. 80–85. doi: 10.4028/ href='www.scientific.net/msf.584-586.80' target='_blank'>www.scientific.net/msf.584-586.80.
  7. Fintová S., Arzaghi M., Kuběna I., Kunz L., Sarrazin-Baudoux C. Fatigue crack propagation in UFG Ti grade 4 processed by severe plastic deformation. International Journal of Fatigue, 2017, vol. 98, pp. 187–194. doi: 10.1016/j.ijfatigue.2017.01.028.
  8. Zhernakov V.S., Semenova I.P., Ermolenko A.N. Influence of the stress strain behavior condition of details from volume nanomaterials on fatigue strength. Vestnik Ufimskogo gosudarstvennogo aviatsionnogo tekhnicheskogo universiteta, 2009, vol. 12, no. 2, pp. 62–68. EDN: KXGYOH.
  9. Uryadov S.A. Improvement of fatigue resistance of parts using technological methods. Izvestiya MGTU MAMI, 2014, vol. 2, no. 1, pp. 176–179. EDN: SMMVKL.
  10. Fedchishin O.V., Trofimov V.V., Klimenov V.A. Influence of ultrasonic processing on structure and physicomechanical properties of titan ВТ 1-0. Sibirskiy meditsinskiy zhurnal (Irkutsk), 2009, vol. 89, no. 6, pp. 189–192. EDN: JVYAVF.
  11. Zhang H., Chiang R., Qin H.F., Ren Z.C., Hou X.N., Lin D., Doll G.L., Vasudevan V.K., Dong Y.L., Ye C. The effects of ultrasonic nanocrystal surface modifiation on the fatigue performance of 3D-printed Ti64. International Journal of Fatigue, 2017, vol. 103, pp. 136–146. doi: 10.1016/j.ijfatigue.2017.05.019.
  12. Liu J., Ren Z., Dong Y., Ye C., Suslov S. Microstructure evolution in Ti64 subjected to laser-assisted ultrasonic nanocrystal surface modification. International Journal of Machine Tools and Manufacture, 2019, vol. 136, pp. 19–33. doi: 10.1016/j.ijmachtools.2018.09.005.
  13. Kholopov Yu.V. Abrasive-free ultrasonic finishing of metals - the technology of the XXI century. Metalloobrabotka, 2001, no. 4, pp. 16–20. EDN: IAFOAR.
  14. Aleksandrov M.K., Papsheva N.D., Akushskaya O.M. Ultrasonic hardening of parts GTE. Vestnik Samarskogo gosudarstvennogo aerokosmicheskogo universiteta im. Akademika S.P. Koroleva (Natsionalnogo issledovatelskogo universiteta), 2011, no. 3-1, pp. 271–276. EDN: OWXWDZ.
  15. Kozlov E.V., Gromov V.E., Kovalenko V.V., Popova N.A. Gradientnye struktury v perlitnoy stali [Gradient structures in pearlitic steel]. Novokuznetsk, SibGIU Publ., 2004. 200 p.
  16. Ivanov Yu.F., Efimov O.Yu., Popova N.A., Kovalenko V.V., Konovalov S.V., Gromov V.E., Kozlov E.V. Formation of Gradient Structural-Phase States at the Nanoscale Level in Rolls. Fundamentalnye problemy sovremennogo materialovedeniya, 2008, vol. 5, no. 4, pp. 55–58. EDN: KTMLNJ.
  17. Lu K. Making strong nanomaterials ductile with gradients: Microstructures that increase metal crystallite size from nanoscale with surface depth are both strong and ductile. Science, 2014, vol. 345, no. 6203, pp. 1455–1456. doi: 10.1126/science.1255940.
  18. Müller M., Lebedev A., Svobodová J., Náprsková N., Lebedev P. Abrasive-free ultrasonic finishing of metals. Manufacturing technology, 2014, vol. 14, no. 3, pp. 366–370.
  19. Aleš Z., Pavlů J., Hromasová M., Svobodová J. Tribological properties of brass surfaces machined by abrasive - free ultrasonic finishing process. Manufacturing technology, 2019, vol. 19, no. 1, pp. 3–8. doi: 10.21062/UJEP/235.2019/A/1213-2489/MT/19/1/3.
  20. Klimenov V.A., Kovalevskaya Zh.G., Kaminskiy P.P., Sharkeev Yu.P., Lotkov A.I. Ultrasonic surface treatment – a promising way to increase the service life of railway transport parts. Vіsnik Skhіdnoukraїnskogo natsіonalnogo unіversitetu imeni Volodimira Dalya, 2010, vol. 152, no. 10, pp. 117–121.
  21. Boguslaev V.A., Vishnepolskiy E.V., Pukhalskaya G.V., Glikson I.L. Increasing the fatigue resistance of thin-walled shafts. Vіsnik dvigunobuduvannya, 2007, no. 2, pp. 136–141.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c)



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies