EMPIRICAL MODEL TO ASSESS NITROGEN OXIDES CONCENTRATION WHEN ADDING HYDROGEN TO THE FUEL-AIR MIXTURE OF SPARK IGNITION ENGINES


Cite item

Full Text

Abstract

The article presents the empirical model to assess nitrogen oxides concentration when adding hydrogen to the fuel-air mixture of piston spark ignition engines. The authors used the results of experiments carried out on the UIT-85 single-cylinder engine. The phenomenon of hydrocarbon flame electrical conduction was used to get the information on the combustion process in the cylinder of experimental engine. On the basis of the moments of ion current origination at the ionization detector electrodes, the authors got the values of velocity of the flame front propagation and the turbulent combustion zone width in the combustion chamber area remote from the ignition spark plug. The article displays the diagrams of dependencies of flame velocity and combustion zone width on the lambda (equivalence ratio) at various rotation rates of a crankshaft and the tempering air quantity in the fuel-air mixture. Using pressure indicator installed in the combustion chamber of experimental engine, the authors got the values of the crank angle based indicated pressure. The article presents the dependence of the combustion master phase duration on the flame propagation velocity and the turbulent combustion zone width. It was shown that the flame characteristics determine considerably the time for the combustion process scenario. The authors carried out the analysis of significant parameters influencing origination of the nitrogen oxides when adding hydrogen to the fuel-air mixture of the spark ignition engines. On the basis of dimensionless number of parameters, an empirical model was developed allowing the assessment of nitrogen oxides concentration when adding hydrogen to the fuel-air mixture and changing the crankshaft rotation frequency and the spark angle in the spark ignition engines. The proposed model allows assessment of the nitrogen oxides concentration during heat calculation of the designed engine.

About the authors

Alexander Petrovich Shaikin

Togliatti State University, Togliatti

Author for correspondence.
Email: a_shajkin@mail.ru

Doctor of Engineering, Professor of the Department «Energy Machines and Control Systems»

Russian Federation

Pavel Valentinovich Ivashin

Togliatti State University, Togliatti

Email: ivashinpv@rambler.ru

candidate of technical sciences, assistant professor of the Department «Energy Machines and Control Systems»

Russian Federation

Alexander Dmitrievich Deryachev

Togliatti State University, Togliatti

Email: proscripts@mail.ru

junior researcher of NIG-17

Russian Federation

References

  1. Malov R.V., Erokhov V.I., Shchetina V.A. Avtomobilniy transport i zashchita okruzhayushchey sredi [Automobile transport and environmental protection]. Moscow, Transport publ., 1982, 200 p.
  2. Kavtaradze R.Z. Teoriya porshnevikh dvigateley. Spetsialnie glavi [Piston engines theory. Special chapters]. Moscow, MGTU im. N.E. Baumana publ., 2008, 720 p.
  3. Mishchenko A.I. Primenenie vodoroda dlya avtomobilnikh dvigateley [Hydrogen application for automobile engines]. Kiev, Naukova dumka publ., 1984, 141 p.
  4. Shatrov E.V., Ramensky A.Yu., Kuznetsov V.M. Study of powered, economical and toxicity characteristics of hydrogen-free mixtures engine. Avtomobilnaya promishlennost, 1979, no. 11, pp. 3–5.
  5. Bortnikov L.N., Pavlov D.A., Rusakov M.M., Shaikin A.P. The composition of combustion products formed from gasoline-hydrogen-air mixtures in a constant-volume spherical chamber. Russian Journal of Physical Chemistry B, 2011, vol. 5, no. 1, pp. 75–83.
  6. Zeldovich Ya.B., Sadovnikov P.Ya., Frank-Kamenetskiy D.A. Okislenie azota pri gorenii [Nitrogen oxidation during combustion]. Moscow, AN SSSR publ., 1947, 148 p.
  7. Zvonov V.A. Toksichnost’ dvigateley vnutrennego sgoraniya [Internal combustion engines toxicity]. Moscow, Mashinostroenie publ., 1981, 160 p.
  8. Sigal I.Ya. Zashchita vozdushnogo basseyna pri szhiganii topliva [Air basin protection when burning fuel]. Leningrad, Nedra publ., 1988, 312 p.
  9. Rayzer Yu.P. Nitrogen oxides origination in the impulse wave during intense explosion in the air. Zhurnal fizicheskoy khimii, 1959, vol. 33, no. 3, pp. 700–709.
  10. Ivashchenko N.A., Kavtaradze R.Z. Mnogozonnie modeli rabochego protsessa dvigateley vnutrennego sgoraniya [Multizone models of the operation process of internal combustion engines]. Moscow, MGTU im. N.E. Baumana publ., 1997, 60 p.
  11. Chesnokov S.A., Demidov M.I. Simulation of heat-mass exchange and chemical kinetics of nitrogen oxide origination in the internal combustion spark ignition engine. Izvestiya Tulskogo gosudarstvennogo universiteta. Seriya Avtomobilniy Transport, 2003, no. 7, pp. 255–264.
  12. Mustafi N.N., Miraglia Y.C., Raine R.R., Bansal P.K., Elder S.T. Spark-Ignition Engine Performance with ‘Powergas’ Fuel (Mixture of CO/H2): A Comparison with Gasoline and Natural Gas Fuel. The Science and Technology of Fuel and Energy, 2006, vol. 85, pp. 1605–1612.
  13. Voinov A.N. Sgoranie v bystrokhodnikh porshnevikh dvigatelyakh [Combustion in high-speed piston engines]. Moscow, Mashinostroenie publ., 1977, 277 p.
  14. Inozemtsev N.V., Koshkin V.K. Protsessi sgoraniya v dvigatelyakh [Combustion processes in engines]. Moscow, Mashgiz publ., 1949, 344 p.
  15. Heywood J.B. Internal Combustion Engine Fundamentals. N.Y., McGraw-Hill, 1988, 930 p.
  16. Vibe I.I. Novoe v rabochem tsikle dvigatelya [New about engine operating cycle]. Moscow, Mashgiz publ., 1962, 271 p.
  17. Shaikin A.P., Deryachev A.D. The relation of combustion area width with flame propagation velocity and ionic current within the spark-ignition engine. Vektor nauki Tolyattinskogo gosudarstvennogo universiteta, 2014, no. 3, pp. 82–86.
  18. Ivashin P.V., Ramazanov M.P., Tverdokhlebov A.Ya., Shaikin A.P., Yasnikov I.S. Interconnection of propagation velocity and electrical conductivity of flame in ices. Vestnik Samarskogo gosudarstvennogo aerokosmicheskogo universiteta im. S.P. Koroleva (natsionalnogo issledovatelskogo universiteta), 2013, no. 3-1, pp. 103–112.
  19. Yasnikov I.S., Ivashin P.V., Shaikin A.P. On the turbulent propagation of a flame in a closed volume. Technical Physics. The Russian Journal of Applied Physics, 2013, vol. 58, no. 11, pp. 1587–1591.
  20. Ivashin P.V., Ramazanov M.P., Tverdokhlebov A.Ya., Shaikin A.P., Yasnikov I.S. Evaluation of internal combustion engine cycle work using an ionic current sensor. Vestnik Samarskogo gosudarstvennogo aerokosmicheskogo universiteta im. S.P. Koroleva (natsionalnogo issledovatelskogo universiteta), 2013, no. 3-2, pp. 122–127.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c)



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies