THE STUDY OF THE PROCESS OF MECHANICAL ALLOYING OF ALUMINUM BY NANO-DIMENSIONAL ALLOTROPIC MODIFICATIONS OF CARBON


Cite item

Full Text

Abstract

The technology of synthesis of dispersed-hardened composites is based on the use of the process of mechanical alloying (MA) of powder materials. Mechanical alloying allows creating the active states in a matrix material solid body that are the centers of physical and chemical interaction between the phases of the powder compositions components. The paper gives the overview of Russian and foreign publications dealing with the study of the MA process of aluminum powder with various forms of carbon. The authors developed the basic MA technology of PAD-1 aluminum matrix powder with K 354 technical carbon. The processes of aluminum powder MA with graphite and CNTs, both in the part of the developed MA regimes and in the part of providing high physical and mechanical characteristics of synthesized composite pellets being a semi-finished product for producing composite materials (CM), were studied. The authors determined the main stages of formation of aluminum-based powder compositions in the process of MA of aluminum powder with allotropic carbon modifications. The paper shows the results of the analysis of phased change (phased evolution) of the morphology of the processed powder mixtures of a matrix material and an alloying additive during the formation of composite pellets with the required physical and mechanical parameters.

The results of X-ray diffraction analysis of the composite pellets alloyed with K 354 technical carbon and GL-1 graphite at different stages of their formation and processing showing the achievement of the required transformation of their internal structure and phase composition are presented.

The authors analyzed special aspects of the process of mechanical alloying of PAD-1 aluminum powder with the TUBALL single-wall carbon nanotubes and justified the necessity of searching for methods and technologies of preliminary (just before the MA process) homogenization of the PAD1-TUBALL processed mixture.

About the authors

Nikolay Ivanovich Vetkasov

Ulyanovsk State Technical University, Ulyanovsk

Author for correspondence.
Email: nppwt@ulstu.ru

Doctor of Sciences (Engineering), professor of Chair “Mechanical engineering technology”

Russian Federation

Anatoliy Ivanovich Kapustin

Ulyanovsk State Technical University, Ulyanovsk

Email: antak1949@mail.ru

head of laboratory

Russian Federation

Valeriy Viktorovich Sapunov

Ulyanovsk State Technical University, Ulyanovsk

Email: sapunov_vv@mail.ru

PhD (Engineering), assistant professor of Chair “Mechanical engineering technology”

Russian Federation

References

  1. Ostovan F., Matori K.A., Toozandehjani M., Oskoueian A., Yusoff H.M., Yunus R., Ariff A.M., Quah H.J., Lim W.F. Effects of CNTs content and milling time on mechanical behavior of MWCNT-reinforced aluminum nanocomposites. Materials Chemistry and Physics, 2015, vol. 166, pp. 160–166.
  2. Anantha Prasad M.G., Bandekar N. Study of Microstructure and Mechanical Behavior of Aluminum/Garnet/Carbon Hybrid Metal Matrix Composites (HMMCs) Fabricated by Chill Casting Method. Journal of Materials Science and Chemical Engineering, 2015, vol. 03, no. 03, pp. 3–11.
  3. Susniak M., Karwan-Baczewska J., Dutkiewicz J., Actis Grande M., Rosso M. An experimental study of aluminum alloy matrix composite reinforced sic made by hot pressing method. Archives of Metallurgy and Materials, 2015, vol. 60, pp. 1523–1527.
  4. Narayanan S.S., Manickavasaham G., Moorthy S. Experimental Investigation of Aluminium alloy with MWCNT Composite to increase the technical Properties by Stir Casting Method. IOSRl Journal of Mechanical and Civil Engineering, 2015, vol. 12, ver. II, pp. 30–34.
  5. Shalunov E.P., Shvedov M.A., Arkhipov I.V. Synthesis of dispersoides at the reactionary mechanical alloying of powder aluminium carbon. Vestnik Chuvashskogo universiteta, 2014, no. 2, pp. 165–172.
  6. Bradbury C.R., Gomon J.K., Kollo L., Kwon H., Leparoux M. Hardness of Multi Wall Carbon Nanotubes reinforced aluminium matrix composites. Journal of Alloys and Compounds, 2014, vol. 585, pp. 362–367.
  7. Peng T., Chang I. Mechanical alloying of multi-walled carbon nanotubes reinforced aluminum composite powder. Powder Technology, 2014, vol. 266, pp. 7–15.
  8. Bunakov N.A., Golovanov V.N., Kozlov D.V., Potapov S.N., Klimov E.S. Obtaining a composite material of aluminum and carbon nanotubes by powder metallurgy method. Fiziko-matematicheskie metody i informatsionnye tekhnologii v estestvoznanii, tekhnike i gumanitarnykh naukakh: sbornik materialov mezhdunarodnogo nauchnogo e-simpoziuma. Kirov, MTsNIP Publ., 2015, pp. 25–37.
  9. Tipikina I.I., Kuzmich Yu.V., Kotov S.A., Kolesnikova I.G., Ganin S.V. Microstresses in mechanically doped AL-15 mas.% (NI-LN) alloy. Problemy ratsionalnogo ispolzovaniya prirodnogo i tekhnogennogo syrya barents-regiona v tekhnologii stroitelnykh i tekhnicheskikh materialov: materialy V Vserossiyskoy nauchnoy konferentsii s mezhdunarodnym uchastiem. Apatity, Kolskiy nauchnyy tsentr RAN Publ., 2013, pp. 169–170.
  10. Raviathul B.M. Srivastava V.C., Mukhopadhyay N.K. Microstructural characteristics and mechanical properties of carbon nanotube reinforced aluminum alloy composites produced by ball milling. Materials & Design, 2014, vol. 64, pp. 542–549.
  11. Karalin A.N., Shalunov E.P., Petrov N.P. Bulk nanostructured aluminum-based material for orthopedics and traumatology. Zdravookhranenie Chuvashii, 2009, no. 3, pp. 8–12.
  12. Kuzmich Yu.V., Kolesnikova I.G., Serba V.I., Freydin B.M. Mekhanicheskoe legirovanie [Mechanical alloying]. Moscow, Nauka Publ., 2005. 213 p.
  13. Zhu X., Zhao Y.G., Wu M., Wang H.Y., Jiang Q.C. Effect of Initial Aluminum Alloy Particle Size on the Damage of Carbon Nanotubes during Ball Milling. Materials, 2016, vol. 9, no. 3, pp. 3–18.
  14. Choi H., Shin J., Min B., Park J., Bae D. Reinforcing effects of carbon nanotubes in structural aluminum matrix nanocomposites. Journal of Materials Research, 2011, vol. 24, pp. 2610–2616.
  15. Yang C., Zong Y., Zheng Z. Shan D. Experimental and theoretical investigation on the compressive behavior of aluminum borate whisker reinforced 2024Al composites. Materials Characterization, 2014, vol. 96, pp. 84–92.
  16. Hassan M.T.Z., Esawi A.M.K., Metwalli S. Effect of carbon nanotube damage on the mechanical properties of aluminum-carbon nanotube composites. Journal of Alloys and Compounds, 2014, vol. 607, pp. 215–222.
  17. Yoo S.J., Han S.H., Kim W.J. Strength and strain hardening of aluminum matrix composites with randomly dispersed nanometer-length fragmented carbon nanotubes. Scr. Mater, 2013, vol. 68, pp. 711–714.
  18. Wang L., Choi H., Myoung J.M., Lee W. Mechanical alloying of multi-walled carbon nanotubes and aluminium powders for the preparation of carbon/metal composites. Carbon, 2009, vol. 47, pp. 3427–3433.
  19. Ci L., Ryu Z., Jin P.N.Y., Rühle M. Investigation of the interfacial reaction between multi-walled carbon nanotubes and aluminum. Acta. Mater, 2006, vol. 54, pp. 5367–5375.
  20. Nayan N., Murty S.V.S.N., Sharma S.C., Kumar K.S., Sinha P.P. Calorimetric study on mechanically milled aluminum and multiwall carbon nanotube composites. Materials Characterization, 2011, vol. 62, pp. 1087–1093.
  21. Kukovecz A., Kanyo T., Konya Z., Kiricsi I. Long-time low-impact ballmilling ofmulti-wall carbon nanotubes. Carbon, 2005, vol. 43, pp. 994–1000.
  22. Tucho W.M., Mauroy H., Walmsley J.C., Deledda S., Holmestad R., Hauback B.C. The effects of ball milling intensity on morphology of multiwall carbon nanotubes. Scr. Mater, 2010, vol. 63, pp. 637–640.
  23. Nam H.R., Kim Y.J., Yang S.S., Ahn J.H. Ball-Milling of Graphite and Multi-Wall Carbon Nanotubes. Journal of Nanoscience and Nanotechnology, 2014, vol. 14, pp. 9103–9107.
  24. Yagodkin Yu.D., Dobatkin S.V. Application of electron microscopy and X-ray diffraction analysis for determination of nano-crystal’ materials structure elements sizes (Review). Zavodskaya laboratoriya. Diagnostika materialov, 2007, vol. 73, no. 1, pp. 38–49.
  25. Pushcharovskiy D.Yu. Rentgenografiya mineralov [Mineral radiography]. Moscow, Geoinformmak Publ., 2000. 293 p.
  26. Gusev A.I. Nanomaterialy, nanostruktury, nanotekhnologi [Nanomaterials, nanostructures, nanotech-nologies]. Moscow, Nauka-Fizmatlit Publ., 2007. 416 p.
  27. Gusev A.I., Kurlov A.S. Characterization of Nanocrystalline Materials by the Size of Particles (Grains). Metallofizika i noveyshie tekhnologiii, 2008, vol. 30, no. 5, pp. 679–694.
  28. Vetkasov N.I., Kapustin A.I., Sapunov V.V. Experimental study of the process of mechanical alloying of aluminum with technical carbon. Teoreticheskie i prakticheskie aspekty razvitiya nauchnoy mysli v sovremennom mire: sbornik statey Mezhdunarodnoy nauchno-prakticheskoy konferentsii. Ufa, AETERNA Publ., 2017, pp. 18–21.
  29. Kuzmich Yu.V., Freydin B.M., Kolesnikova I.G., Serba V.I., Kalinnikov V.T., Pakhomovskiy Ya.A. Mechanically doped Al-Ni-Ln alloy. Perspektivnye materialy, 2008, no. 1, pp. 39–45.
  30. Hawk J.A., Franck R.E., Wilsdorf H.G.F. Yield Stress as Determined from Hardness Measurements for Mechanically Alloyed Aluminum Base Alloys. Metallurgical Transactions A, 1988, vol. 19A, pp. 2363–2366.
  31. Vol A.E. Stroenie i svoystva dvoynykh metallicheskikh system [Structure and Properties of Binary Metal Systems]. Moscow, Fizmatgiz Publ., 1955. 755 p.
  32. Mondolfo L.F. Struktura i svoystva alyuminievykh splavov [Aluminium Alloys: Structure and Properties]. Moscow, Metallurgiya Publ., 1979. 639 p.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c)



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies