SPECIAL ASPECTS OF HEAT TREATMENT OF STEELS FOR THE PRODUCTION OF HOT DEFORMATION STAMPS
- Authors: Krylova S.E.1, Romashkov E.V.1, Pilipchuk G.P.2
-
Affiliations:
- Orenburg State University, Orenburg
- JSC “Heavy Engineering ORMETO–YUMZ”, Orsk
- Issue: No 4 (2017)
- Pages: 52-58
- Section: Technical Sciences
- URL: https://vektornaukitech.ru/jour/article/view/190
- DOI: https://doi.org/10.18323/2073-5073-2017-4-52-58
- ID: 190
Cite item
Full Text
Abstract
The authors identified the influence of heat treatment parameters on the structure and properties of the advanced 70H3G2FTR die steel for hot deformation. The optimal heat hardening mode for the hot working hammer die produced from the suggested steel is recommended, which contains spheroidizing annealing at the temperature of 780 °C with the slow furnace cooling up to 550 °С and the following still air cooling up to the normal temperature; hardening at 1000 °С with oil cooling; high-temperature tempering at 550–600 °С with the still air cooling. During the hardening process, the structure of lath martensite with the high density of dislocations and the hardness HRC 57–62 is formed, however, 0.5–0.6 % of carbide phase remains insoluble.
It is shown that at the stage of high-temperature tempering at 550–600 °С, the process of hardness stabilizing by special complex carbide and intermetallic compounds inclusions can be observed in 70H3G2FTR steel. The analysis of carbide phase at the tempering shows that the compounds of Ме7С3 and Ме3С types are the carbides, which composition changes in the process of thermal influence. So, for example, part of Fe and Cr atoms are replaced with Ti and V atoms in various ratios.
The authors simulated the temperature-stress condition of hammer die during thermal treatment. It is shown, that the suggested mode of thermal treatment of 70H3G2FTR steel leads to the production of the dispersed ferrite-cementite structure with the distributed special carbides, high level of mechanical properties, and provides the uniform distribution of temperature fields along the volume of hot deformation stamp and, as a consequence, the insignificant internal residual stresses. At the stage of high-temperature soak, the temperature gradient is minimized and does not exceed 25–30 °С.
About the authors
Svetlana Evgenievna Krylova
Orenburg State University, Orenburg
Author for correspondence.
Email: krilova27@yandex.ru
PhD (Engineering), assistant professor of Chair “Material science and materials technology”
РоссияEvgeniy Vladimirovich Romashkov
Orenburg State University, Orenburg
Email: evgeniyromashkov@yandex.ru
postgraduate student of Chair “Material science and materials technology”
РоссияGrigoriy Petrovich Pilipchuk
JSC “Heavy Engineering ORMETO–YUMZ”, Orsk
Email: Gen.Director@ormeto-yumz.ru
General Director
РоссияReferences
- Vinokur B.B., Pilyushenko V.L. Prochnost’ i khrupkost’ konstruktsionnoy legirovannoy stali [Strength and brittleness of structural alloy steel]. Kiev, Naukova Dumka Publ., 1983. 283 p.
- Garmaev I.A., Mosorov V.I., Mizhitov A.Ts., Lygdenov B.D., Guryev A.M. Hardening of die cast steel surface. Sovremennye naukoemkie tekhnologii, 2007, no. 6, pp. 32–33.
- Zhuravlev V.N. Shtampy dlya goryachego deformirovaniya, rezhimy i sposoby ikh izgotovleniya [Stamps for hot deformation, modes and methods of their manufacture]. Moscow, TsNIITEItraktorselmash Publ., 1976. 55 p.
- Kamantsev S.V. Instrumentalnaya stal’ dlya goryachego deformirovaniya [Tool steel for hot deformation]. Patent FR, no. 2535148, 2013.
- Krylova S.E. Effect of heat treatment on the formation of the structure of economically alloyed steels of the tool class. Materialy mezhdunar. nauch. konf. “Innovatsionnaya deyatelnost’ predpriyatiy po issledovaniyu, obrabotke i polucheniyu sovremennykh konstruktsionnykh materialov i splavov”. Moscow, Mashinostroenie Publ., 2009, pp. 410–420.
- Houdremont E. Spetsialnye stali [Handbuch der Sonderstahlkunde]. Moscow, Metallurgizdat Publ., 1959. Vol. 1, 952 p.
- Makarov A.V., Korshunov L.G., Malygina I.Yu., Solodova I.L. Increase in the heat-and wear-resistance of hardened carbon steels using frictional strengthening treatment. Metallovedenie i termicheskaya obrabotka metallov, 2007, no. 3, pp. 57–62.
- Smirnov M.A., Schastlivtsev V.M., Zhuravlev L.G. Osnovy termicheskoy obrabotki stali [Basics of heat treatment of steel]. Moscow, Nauka i tekhnologii Publ., 2002. 519 p.
- GOST 9450–76. Izmerenie mikrotverdosti vdavlivaniem almaznykh nakonechnikov [Measurements microhardness by diamond instruments indentation]. Moscow, Izdatelstvo standartov Publ., 1993. 35 p.
- Novikov I.I. Teoriya termicheskoy obrabotki [Theory of heat treatment]. Moscow, Metallurgiya Publ., 1986. 480 p.
- Shtremel’ M.A. Prochnost’ splavov. Chast’ II [Strength of alloys. Part II]. Moscow, MISIS Publ., 1997. 527 p.
- Vinokur B.B., Pilyushenko V.L. Prokalivaemost’ konstruktsionnykh staley [Stability of structural steels]. Kiev, Naukova Dumka Publ., 1970. 108 p.
- Smirnov M.A., Schastlivtsev V.M., Zhuravlev L.G. Osnovy termicheskoy obrabotki stali [Basics of heat treatment of steel]. Ekaterinburg, UrORAN Publ., 1999. 536 p.
- Antonov S.M., Akhmedyanov A.M., Gaslenko M.I., Rushchits S.V., Sokolov S.O., Krylova S.E., Yakunina O.A. Supercooled austenite decomposition kinetics of experimental economically alloyed tool steels during continuous cooling. Vestnik Yuzhno-Uralskogo gosudarstvennogo universiteta. Seriya: Metallurgiya, 2012, no. 39, pp. 79–84.
- Steblov A.B., Lenartovich D.V., Ponkratin E.I. New steel for hot deformation dies. Metallurg, 2006, no. 2, pp. 41–43.
- Gol’dshteyn M.I., Popov V.V. Rastvorimost’ faz vnedreniya pri termicheskoy obrabotke stali [Solubility of implantation phases during heat treatment of steel]. Moscow, Metallurgiya Publ., 1989. 200 p.
- Kolokoltsev V.M., Ivanova I.V. Cast steel dies for hot deformation. Vestnik Magnitogorsk State Technical University named after G.I. Nosov, 2009, no. 4, pp. 15–17.
- Krylova S.E., Priimak E.Yu., Kletsova O.A., Yakovleva I.L., Tereshchenko N.A. Influence of kinetics of supercooled austenite decomposition on structure formation in sparingly-alloyed tool steel. The physics of metals and metallography, 2013, vol. 114, no. 10, pp. 851–859.
- Prigozhin I.R. Vvedenie v termodinamiku neobratimykh protsessov [Introduction to the thermodynamics of irreversible processes]. Moscow, Mir Publ., 2001. 160 p.
- Krylova S.E., Romashkov E.V., Kuznetsov A.V. Peculiarities of Thermal Hardening of Experimental Sparingly-Alloy Tool-Class Steels. International Conference on Industrial Engineering, 2016, vol. 870, pp. 392–396.