Structure and mechanical properties of high-entropy alloys of the CoCrZrMnNi system with different Zr and Mn contents produced by vacuum-induction melting
- Authors: Konovalov S.V.1,2, Drobyshev V.K.3, Panchenko I.A.3, Li H.2
-
Affiliations:
- Siberian State Industrial University
- Harbin Engineering University
- 654007, Россия, г. Новокузнецк, ул. Кирова, 42
- Issue: No 1 (2025)
- Pages: 21-34
- Section: Articles
- URL: https://vektornaukitech.ru/jour/article/view/1023
- DOI: https://doi.org/10.18323/2782-4039-2025-1-71-2
- ID: 1023
Cite item
Abstract
The mechanical properties and microstructure of high-entropy alloys (HEA) of the CoCrZrMnNi system produced by vacuum-induction melting are studied depending on the change in the Zr and Mn content. The effect of the Zr and Mn percentage on the microstructure and mechanical properties (Young’s modulus, nanohardness, microhardness) of the high-entropy alloys of the CoCrZrMnNi system is estimated. The relationship between varying the percentage of Zr and Mn and changing the grain size and mechanical properties of high-entropy alloys is studied. The structure, chemical composition and distribution of the intensity of characteristic X-ray radiation of atoms are studied using scanning electron microscopy. The study by scanning electron microscopy methods has demonstrated that in CoCrZrMnNi alloys, with an increase in the zirconium content and a decrease in the manganese content closer to the equiatomic composition, the material structure became more homogeneous. Changing the percentage of zirconium from 8 to 28 at. % contributed to the grain size reduction from 30 to 5 μm and a more uniform elemental distribution. The Сo19.8Cr17.5Zr15.3Mn27.7Ni19.7 alloy demonstrated the highest nanohardness (10 GPa) and Young’s modulus (161 GPa) during instrumental indentation with an indenter load of 50 mN. The Сo20.4Cr18.0Zr7.9Mn33.3Ni20.3 alloy has the lowest nanohardness, Young’s modulus, and microhardness among other alloys, which may be related to the coarse-grained structure with a grain size of up to 30 μm. As the indenter load increased to 5 N, the microhardness of the Сo19.8Cr17.5Zr15.3Mn27.7Ni19.7 alloy decreased compared to the Сo18.7Cr16.5Zr28.9Mn17.4Ni18.6 alloy, which may indicate more universal mechanical properties of alloys with equiatomic zirconium content.
About the authors
Sergey V. Konovalov
Siberian State Industrial University; Harbin Engineering University
Author for correspondence.
Email: konovalov@sibsiu.ru
ORCID iD: 0000-0003-4809-8660
доктор технических наук, профессор, проректор по научной и инновационной деятельности
Россия, 654007, Russia, Novokuznetsk, Kirov Street, 42; 264006, China, Yantai, Qingdao Street, No. 1Vladislav K. Drobyshev
654007, Россия, г. Новокузнецк, ул. Кирова, 42
Email: drobyshev_v.k@mail.ru
ORCID iD: 0000-0002-1532-9226
postgraduate student of Chair of Metal Forming and Materials Science of EVRAZ ZSMK, researcher of the Laboratory of Electron Microscopy and Image Processing
Россия, 654007, Russia, Novokuznetsk, Kirov Street, 42Irina A. Panchenko
654007, Россия, г. Новокузнецк, ул. Кирова, 42
Email: panchenko.sibsiu@yandex.ru
ORCID iD: 0000-0002-1631-9644
PhD (Engineering), assistant professor of Chair of Quality Management and Innovation, Head of the Laboratory of Electron Microscopy and Image Processing
Россия, 654007, Russia, Novokuznetsk, Kirov Street, 42Haixin Li
Harbin Engineering University
Email: lihaixin@hrbeu.edu.cn
ORCID iD: 0000-0002-3444-115X
PhD, associate professor of Yantai Research Institute
Китай, 264006, China, Yantai, Qingdao Street, No. 1References
- Pandey V., Seetharam R., Chelladurai H. A comprehensive review: Discussed the effect of high-entropy alloys as reinforcement on metal matrix composite properties, fabrication techniques, and applications. Journal of Alloys and Compounds, 2024, vol. 1002, article number 175095. doi: 10.1016/j.jallcom.2024.175095.
- Zosu S.J., Amaghionyeodiwe C.A., Adedeji K.A. Optimization of high-entropy alloys (HEAS) for lightweight automotive components: Design, fabrication, and performance enhancement. Global Journal of Engineering and Technology Advances, 2024, vol. 21, no. 1, pp. 064–072. doi: 10.30574/gjeta.2024.21.1.0182.
- Ahmadkhaniha D., Zanella C. High Entropy Alloy Deposition from an Aqueous Bath. Meeting abstracts, 2023, vol. MA2023-02, article number 1263. doi: 10.1149/ma2023-02201263mtgabs.
- Rogachev A.S. Structure, stability, and properties of high-entropy alloys. Physics of Metals and Metallography, 2020, vol. 121, no. 8, pp. 733–764. doi: 10.1134/S0031918X20080098.
- Kao Yih-Farn, Chen Ting-Jie, Chen Swe-Kai, Yeh Jien-Wei. Microstructure and mechanical property of as-cast, homogenized and deformed AlxCoCrFeNi (0≤x≤2) high-entropy alloys. Journal of Alloys and Compounds, 2009, vol. 488, pp. 57–64. doi: 10.1016/j.jallcom.2009.08.090.
- Poletti M.G., Fiore G., Gili F., Mangherini D., Battezzati L. Development of a new high entropy alloy for wear resistance: FeCoCrNiW0.3 and FeCoCrNiW0.3 + 5 at.% of C. Materials and Design, 2017, vol. 115, pp. 247–254. doi: 10.1016/j.matdes.2016.11.027.
- Tabachnikova E.D., Podolskiy A.V., Laktionova M.O., Bereznaia N.A., Tikhonovsky M.A., Tortika A.S. Mechanical properties of the CoCrFeNiMnVx high entropy alloys in temperature range 4.2–300 K. Journal of Alloys and Compounds, 2017, vol. 698, pp. 501–509. doi: 10.1016/j.jallcom.2016.12.154.
- Gludovatz B., Hohenwarter A., Catoor D., Chang E.H., George E.P., Ritchie R.O. A fracture-resistant high entropy alloy for cryogenic applications. Science, 2014, vol. 345, pp. 1153–1158. doi: 10.1126/science.1254581.
- Kim Han-Eol, Kim Jae-Hyun, Jeong Ho-In, Cho Young-Tae, Salem O., Jung Dong-Won, Lee Choon-Man. Effects of Mo Addition on Microstructure and Corrosion Resistance of Cr25-xCo25Ni25Fe25Mox High-Entropy Alloys via Directed Energy Deposition. Micromachines, 2024, vol. 15, no. 10, article number 1196. doi: 10.3390/mi15101196.
- Nesterov K.M., Farrakhov R.G., Aubakirova V.R., Islamgaliev R.K., Sirazeeva A.R., Abuayyash A. Thermal stability and corrosion resistance of ultrafine-grained high-entropy Fe30Ni30Mn30Cr10 alloy. Frontier Materials & Technologies, 2022, no. 4, pp. 81–89. doi: 10.18323/2782-4039-2022-4-81-89.
- Yeh Jien-Wei. Alloy Design Strategies and Future Trends in High-Entropy Alloys. JOM, 2013, vol. 65, pp. 1759–1771. doi: 10.1007/s11837-013-0761-6.
- Yong Zhang, Ting Ting Zuo, Zhi Tang, Michael C. Gao, Dahmen K.A., Liaw P.K., Zhao Ping Lu. Microstructures and properties of high-entropy alloys. Progress in Materials Science, 2014, vol. 61, pp. 1–93. doi: 10.1016/j.pmatsci.2013.10.001.
- Cantor B., Chang I.T.H., Knight P., Vincent A.J.B. Microstructural development in equiatomic multicomponent alloys. Materials Science and Engineering: A, 2004, vol. 375–377, pp. 213–218. doi: 10.1016/j.msea.2003.10.257.
- Gromov V.E., Konovalov S.V., Chen X., Efimov M.O., Panchenko I.A., Shlyarov V.V. Development vector for enhancement of Cantor HEA properties. Bulletin of the Siberian State Industrial University, 2023, no. 2, pp. 3–12. doi: 10.57070/2304-4497-2023-2(44)-3-12.
- Drobyshev V.K., Panchenko I.A., Konovalov S.V. Mechanical properties and microstructure of alloys of the CoCrFeMnNi system. Polzunovskiy vestnik, 2024, no. 2, pp. 249–254. doi: 10.25712/ASTU.2072-8921.2024.02.033.
- Panchenko I.A., Drobyshev V.K., Konovalov S.V., Bessonov D.A. Structural Change in Co–Cr–Fe–Mn–Ni Alloys upon Variation in Mn and Fe Concentrations. Technical Physics Letters, 2024, no. 7. doi: 10.1134/S1063785024700391.
- Huo Wenyi, Zhou Hui, Fang Feng, Xie Zonghan, Jiang Jianqing. Microstructure and mechanical properties of CoCrFeNiZrx eutectic high-entropy alloys. Materials and Design, 2017, vol. 134, pp. 226–233. doi: 10.1016/j.matdes.2017.08.030.
- Polunina A.O., Polunin A.V., Krishtal M.M. The influence of addition of ZrO2 nanoparticles to the electrolyte on the structure and anticorrosion properties of oxide layers formed by plasma electrolytic oxidation on the Mg97Y2Zn1 alloy. Frontier Materials & Technologies, 2023, no. 4, pp. 87–98. doi: 10.18323/2782-4039-2023-4-66-8.
- Xu Haijian, Lu Zheng, Wang Dongmei, Liu Chunming. Microstructure Refinement and Strengthening Mechanisms of a 9Cr Oxide Dispersion Strengthened Steel by Zirconium Addition. Nuclear Engineering and Technology, 2017, vol. 49, no. 1, pp. 178–188. doi: 10.1016/j.net.2017.01.002.
- He J.Y., Wang H., Huang H.L. et al. A precipitation-hardened high-entropy alloy with outstanding tensile properties. Acta Materialia, 2016, vol. 102, pp. 187–196. doi: 10.1016/j.actamat.2015.08.076.
- Otto F., Hanold N.L., George E.P. Microstructural evolution after thermomechanical processing in an equiatomic, single-phase CoCrFeMnNi high-entropy alloy with special focus on twin boundaries. Intermetallics, 2014, vol. 54, pp. 39–48. doi: 10.1016/j.intermet.2014.05.014.
- Campari E.G., Casagrande A., Colombini E., Gualtieri M.L., Veronesi P. The effect of Zr addition on melting temperature, microstructure, recrystallization and mechanical properties of a Cantor high entropy alloy. Materials, 2021, vol. 14, no. 20, article number 5994. doi: 10.3390/ma14205994.
- Moravcik I., Kubicek A., Moravcikova-Gouvea L., Ondrej A., Kana V., Pouchly V., Zadera A., Dlouhy I. The Origins of High-Entropy Alloy Contamination Induced by Mechanical Alloying and Sintering. Metals, 2020, vol. 10, no. 9, article number 1186. doi: 10.3390/met10091186.
Supplementary files
