On the formation of thermal barrier coatings by magnetron sputtering

Cover Page

Cite item

Abstract

The use of magnetron sputtering systems with extended uncooled targets will allow developing industrial import-substituting technologies for the formation of thermal barrier coatings, based on zirconium oxide doped with rare earth metal oxides to solve urgent problems of gas turbine construction. This paper presents the results of comparing the technology for producing thermal barrier coatings by magnetron sputtering, with two types of extended targets made of Zr–8%Y alloy – a widely used cooled target and an uncooled extended target, of a magnetron sputtering system developed by the authors. This paper gives a comparison of the results of mass-spectrometric studies of the hysteresis of the oxygen partial pressure inherent in the technology for producing oxide films; the influence of the target type on the coating growth rate; studies of the structure of thermal barrier coatings using the scanning electron microscopy method; and the elemental composition of coatings based on zirconium dioxide partially stabilised with yttrium oxide – YSZ. It has been experimentally found that increasing the temperature of the magnetron sputtering system target, allows decreasing the loop width of the characteristic hysteresis of the oxygen partial pressure dependence on its flow rate by 2 times. The obtained dependencies allowed determining the range of oxygen flow rates at various magnetron discharge powers, at which the work can be performed with stable and sustainable process control, without the risk of falling into hysteresis. The conducted metallographic studies showed a characteristic developed porous dendritic structure of the ceramic layer, which is necessary to reduce the thermal conductivity coefficient of the thermal barrier coating. It has been revealed that the use of an uncooled target allows increasing the deposition rate of the thermal barrier coating by more than 10 times compared to the deposition rate for a cooled target. The obtained results demonstrate the possibility of using the magnetron sputtering technology of an extended uncooled target to form a ceramic layer of thermal barrier coatings.

About the authors

Gennady V. Kachalin

National Research University “Moscow Power Engineering Institute”

Email: KachalinGV@mpei.ru
ORCID iD: 0000-0001-9506-862X

PhD (Engineering), leading researcher

Россия, 111250, Russia, Moscow, Krasnokazarmennaya Street, 14, build. 1

Konstantin S. Medvedev

National Research University “Moscow Power Engineering Institute”

Email: MedvedevKS@mpei.ru
ORCID iD: 0000-0003-1667-458X

leading engineer

Россия, 111250, Russia, Moscow, Krasnokazarmennaya Street, 14, build. 1

Aleksey F. Mednikov

National Research University “Moscow Power Engineering Institute”

Email: MednikovAlF@mpei.ru
ORCID iD: 0000-0003-4883-7873

PhD (Engineering), leading researcher

Россия, 111250, Russia, Moscow, Krasnokazarmennaya Street, 14, build. 1

Olga S. Zilova

National Research University “Moscow Power Engineering Institute”

Email: ZilovaOS@mpei.ru
ORCID iD: 0000-0002-0410-8188

PhD (Engineering), leading researcher

Россия, 111250, Russia, Moscow, Krasnokazarmennaya Street, 14, build. 1

Aleksandr B. Tkhabisimov

National Research University “Moscow Power Engineering Institute”

Author for correspondence.
Email: TkhabisimovAB@mpei.ru
ORCID iD: 0000-0001-9544-9086

PhD (Engineering), senior researcher

Россия, 111250, Russia, Moscow, Krasnokazarmennaya Street, 14, build. 1

Dmitriy I. Ilyukhin

National Research University “Moscow Power Engineering Institute”

Email: IliukhinDI@mpei.ru
ORCID iD: 0009-0009-6385-0284

engineer of the 1st category

Россия, 111250, Russia, Moscow, Krasnokazarmennaya Street, 14, build. 1

Vladislav A. Kasyanenko

National Research University “Moscow Power Engineering Institute”

Email: KasyanenkoVA@mpei.ru
ORCID iD: 0009-0000-7510-2106

engineer of the 1st category

Россия, 111250, Russia, Moscow, Krasnokazarmennaya Street, 14, build. 1

References

  1. Banerjee P., Roy A., Sen S., Ghosh A., Saha G., Seikh A.H., Alnaser I.A. Ghosh M. Service life assessment of yttria stabilized zirconia (YSZ) based thermal barrier coating through wear behavior. Heliyon, 2023, vol. 9, no. 5, article number e16107. doi: 10.1016/j.heliyon.2023.e16107.
  2. Singh M., Sahu P.K., Sampath S., Jonnalagadda K.N. Fracture toughness of freestanding plasma sprayed yttria stabilized zirconia coatings via in situ tensile experiments. Journal of the European Ceramic Society, 2024, vol. 44, no. 4, pp. 2499–2511. doi: 10.1016/j.jeurceramsoc.2023.10.074.
  3. Liu Qiaomu, Huang Shunzhou, He Aijie. Composite ceramics thermal barrier coatings of yttria stabilized zirconia for aero-engines. Journal of Materials Science & Technology, 2019, vol. 35, no. 12, pp. 2814–2823. doi: 10.1016/j.jmst.2019.08.003.
  4. Raza M., Boulet P., Pierson J.-F., Snyders R., Konstantinidis S. Thermal stability of oxygen vacancy stabilized zirconia (OVSZ) thin films. Surface and Coatings Technology, 2021, vol. 409, article number 126880. doi: 10.1016/j.surfcoat.2021.126880.
  5. De Goes W.U., Markocsan N., Gupta M., Vaßen R., Matsushita T., Illkova K. Thermal barrier coatings with novel architectures for diesel engine applications. Surface and Coatings Technology, 2020, vol. 396, article number 125950. doi: 10.1016/j.surfcoat.2020.125950.
  6. Yetim A.F., Tekdir H., Turalioglu K., Taftali M., Yetim T. Tribological behavior of plasma-sprayed Yttria-stabilized zirconia thermal barrier coatings on 316L stainless steel under high-temperature conditions. Materials Letters, 2023, vol. 336, article number 133873. doi: 10.1016/j.matlet.2023.133873.
  7. Karaoglan A.C., Ozgurluk Y., Gulec A., Ozkan D., Binal G. Effect of coating degradation on the hot corrosion behavior of yttria-stabilized zirconia (YSZ) and blast furnace slag (BFS) coatings. Surface and Coatings Technology, 2023, vol. 473, article number 130000. doi: 10.1016/j.surfcoat.2023.130000.
  8. Chen Can, Song Xuemei, Li Wei, Zheng Wei, Ji Heng, Zeng Yi, Shi Ying. Relationship between microstructure and bonding strength of yttria-stabilized zirconia thermal barrier coatings. Ceramics International, 2022, vol. 48, no. 4, pp. 5626–5635. doi: 10.1016/j.ceramint.2021.11.107.
  9. Sanjai S.G., Srideep S., Krishna B.A., Sumanth M.S., Ramaswamy P. Synthesis of Yttria-Stabilized Zirconia Nano Powders for Plasma Sprayed Nano Coatings. Materials Today: Proceedings, 2020, vol. 22, part 4, pp. 1253–1263. doi: 10.1016/j.matpr.2020.01.418.
  10. Wang Xin, Zhen Zhen, Huang Guanghong, Mu Rende, He Limin, Xu Zhenhua. Thermal cycling of EB-PVD TBCs based on YSZ ceramic coat and diffusion aluminide bond coat. Journal of Alloys and Compounds, 2021, vol. 873, article number 159720. doi: 10.1016/j.jallcom.2021.159720.
  11. Mulone A., Mahade S., Björklund S., Lundström D., Kjellman B., Joshi S., Klement U. Development of yttria-stabilized zirconia and graphene coatings obtained by suspension plasma spraying: Thermal stability and influence on mechanical properties. Ceramics International, 2023, vol. 49, no. 6, pp. 9000–9009. doi: 10.1016/j.ceramint.2022.11.055.
  12. Berlin E.V., Seydman L.A. Poluchenie tonkikh plenok reaktivnym magnetronnym raspyleniem [Production of thin films by reactive magnetron sputtering]. 2nd ed., ispr. i dop. Moscow, URSS Publ., 2022. 316 p.
  13. Tkhabisimov A.B., Mednikov A.F., Dasaev M.R., Kachalin G.V., Zilova O.S. Solid particle erosion resistance of protective ion-plasma coating formed on full-scale objects based on modern additive technologies. International Journal of Innovative Technology and Exploring Engineering, 2019, vol. 8, no. 7, pp. 2295–2302. EDN: YNNMPC.
  14. Dukhopelnikov D.V., Bulychev V.S., Vorobev E.V. Magnetron discharge with liquid-phase cathode. Herald of the Bauman Moscow State Technical University, Series Natural Sciences, 2018, no. 1, pp. 95–103. doi: 10.18698/1812-3368-2018-1-95-103.
  15. Kuritsyna I.E., Bredikhin S.I., Agarkov D.A., Borik M.A., Kulebyakin A.V., Milovich F.O., Lomonova E.E., Myzina V.A., Tabachkova N.Yu. Electrotransport characteristics of ceramic and single crystal materials with the (ZrO2)0.89(Sc2O3)0.10(Y2O3)0.01 composition. Russian Journal of Electrochemistry, 2018, vol. 54, pp. 481–485. doi: 10.1134/S1023193518060125.
  16. Zhang Wanying, Shi Fengyue, Wang Jianwen, Yang Yang, Zhao Guangdong, Zhao Dongyu. Preparation and properties of a porous ZrO2/SiZrBOC ceramic matrix composite with high temperature resistance and low thermal conductivity. Journal of the European Ceramic Society, 2024, vol. 44, no. 4, pp. 2329–2337. doi: 10.1016/j.jeurceramsoc.2023.11.007.
  17. Lin Jianliang, Stinnett T.C. Development of thermal barrier coatings using reactive pulsed dc magnetron sputtering for thermal protection of titanium alloys. Surface & Coatings Technology, 2020, vol. 403, article number 126377. doi: 10.1016/j.surfcoat.2020.126377.
  18. Reddy G.V., Rasu N.G., Kumar M.M., Prasad J., Hari T. Review on Advanced Alternative Thermal Barrier Coatings (TBC’s) Materials in Low Heat Rejection Engines. International Journal of Research in Mechanical Engineering and Technology, 2016, vol. 6, no. 2, pp. 27–35.
  19. Bleykher G.A., Borduleva A.O., Krivobokov V.P., Sidelev D.V. Evaporation factor in productivity increase of hot target magnetron sputtering systems. Vacuum, 2016, vol. 132, pp. 62–69. doi: 10.1016/j.vacuum.2016.07.030.
  20. Chen Dianying, Dambra C., Dorfman M. Process and properties of dense and porous vertically-cracked yttria stabilized zirconia thermal barrier coatings. Surface and Coatings Technology, 2020, vol. 404, article number 126467. doi: 10.1016/j.surfcoat.2020.126467.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Kachalin G.V., Medvedev K.S., Mednikov A.F., Zilova O.S., Tkhabisimov A.B., Ilyukhin D.I., Kasyanenko V.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies