Computer prediction of fracture of magnesium alloy cylindrical billet during equal channel angular pressing

Cover Page

Cite item

Abstract

The main challenge in using magnesium alloys, applied in medicine as biodegradable materials, is their difficult deformability, which in turn leads to frequent failure of samples during severe plastic deformation. This paper shows that the temperature mode of equal channel angular pressing (ECAP) of a Mg–Zn–Ca system magnesium alloy, which ensures deformation of samples without failure, can be determined based on the results of finite-element computer simulation of the stress-strain state of the billet, calculation of alloy damage using the Cockcroft–Latham model, and prediction of the sample failure area. Modelling showed that the surface area of the billet adjacent to the matrix inner corner during ECAP, is the area of possible failure of the magnesium alloy. The value of alloy damage during ECAP in this area at T=350 °C is less than 1, which corresponds to non-failure of the metal. To verify the computer simulation results, ECAP physical simulation was performed; billets without signs of failure were produced. A study of the mechanical properties of the Mg–1%Zn–0.06%Ca magnesium alloy was conducted before and after ECAP processing according to the selected mode: the ultimate strength limit increased by 45 %, the hardness increased by 16 %, while the plasticity increased by 5 %.

About the authors

Elena P. Volkova

Ufa University of Science and Technology

Email: epvolkova@mail.ru
ORCID iD: 0009-0004-7183-4077

junior researcher of the Research Institute of Physics of Advanced Materials

Россия, 450076, Russia, Ufa, Zaki Validi Street, 32

Gandzhina D. Khudododova

Ufa University of Science and Technology

Email: khudododova.gd@gmail.com
ORCID iD: 0000-0002-1273-8518

junior researcher of the Research Institute of Physics of Advanced Materials

Россия, 450076, Russia, Ufa, Zaki Validi Street, 32

Aleksandr V. Botkin

Ufa University of Science and Technology

Email: botkinav@yandex.ru
ORCID iD: 0000-0001-9522-280X

Doctor of Sciences (Engineering), professor of Chair of Materials Science and Physics of Metals

Россия, 450076, Russia, Ufa, Zaki Validi Street, 32

Ruslan Z. Valiev

Ufa University of Science and Technology

Author for correspondence.
Email: ruslan.valiev@ugatu.su
ORCID iD: 0000-0003-4340-4067

Doctor of Sciences (Physics and Mathematics), Professor, Director of the Research Institute of Physics of Advanced Materials

Россия, 450076, Russia, Ufa, Zaki Validi Street, 32

References

  1. Sun Yu, Zhang Baoping, Wang Yin, Geng Lin, Jiao Xiaohu. Preparation and characterization of a new biomedical Mg-Zn-Ca alloy. Materials and Design, 2012, vol. 34, pp 58–64. doi: 10.1016/j.matdes.2011.07.058.
  2. Vinogradov A., Merson E., Myagkikh P., Linderov M., Brilevsky A., Merson D. Attaining High Functional Performance in Biodegradable Mg-Alloys: An Overview of Challenges and Prospects for the Mg-Zn-Ca System. Materials, 2023, vol. 16, no. 3, article number 1324. doi: 10.3390/ma16031324.
  3. Valiev R.Z., Zhilyaev A.P., Lengdon T.Dzh. Obemnye nanostrukturnye materialy: fundamentalnye osnovy i primeneniya [Bulk nanostructural materials: fundamental principle and application]. Sankt Petersburg, Eko-Vektor Publ., 2017. 479 p.
  4. Martynenko N.S., Anisimova N.Y., Rybalchenko O.V. et al. Rationale for Processing of a Mg-Zn-Ca Alloy by Equal-Channel Angular Pressing for Use in Biodegradable Implants for Osteoreconstruction. Crystals, 2021, vol. 11, article number 1381. doi: 10.3390/cryst11111381.
  5. Medeiros M.P., Lopes D.R., Kawasaki M., Langdon T.G., Figueiredo R.B. An Overview on the Effect of Severe Plastic Deformation on the Performance of Magnesium for Biomedical Applications. Materials, 2023, vol. 16, no. 6, article number 2401. doi: 10.3390/ma16062401.
  6. Rezaei-Baravati A., Kasiri-Asgarani M., Bakhsheshi-Rad H.R., Omidi M., Karamian E. Microstructure, Biodegradation, and Mechanical Properties of Biodegradable Mg-Based Alloy Containing Calcium for Biomedical Applications. Physical Mesomechanics, 2023, vol. 26, no. 2, pp. 176–195. doi: 10.1134/S1029959923020078.
  7. Alper Incesu, Ali Gungor. Mechanical properties and biodegradability of Mg–Zn–Ca alloys: homogenization heat treatment and hot rolling. Journal of materials science. Materials in medicine, 2020, vol. 31, no. 12, article number 123. doi: 10.1007/s10856-020-06468-5.
  8. Roche V., Koga G.Y., Matias T.B., Kiminami C.S., Bolfarini C., Botta W.J., Nogueira R.P., Jorge Junior A.M. Degradation of Biodegradable Implants: The Influence of Microstructure and Composition of Mg-Zn-Ca Alloys. Journal of Alloys and Compounds, 2019, vol. 774, pp. 168–181. doi: 10.1016/j.jallcom.2018.09.346.
  9. Kolmogorov V.L. Numerical simulation of large plastic deformations and failure of metals. Kuznechno-shtampovochnoe proizvodstvo, 2003, no. 2, pp. 4–16.
  10. Botkin A.V., Valiev R.Z., Stepin P.S., Baymukhametov A.Kh. Estimation of metal damage during cold plastic deformation using the Cockcroft–Latham failure model. Deformatsiya i razrushenie materialov, 2011, no. 7, pp. 17–22. EDN: NXAHSN.
  11. Kwak Eun Jeong, Bok Cheon Hee, Seo Min Hong, Kim Taek-Soo, Kim Hyoung Seop. Processing and mechanical properties of fine-grained magnesium by equal channel angular pressing. Materials Transactions, 2008, vol. 49, no. 5, pp. 1006–1010. doi: 10.2320/matertrans.MC200725.
  12. Christiansen P., Nielsen C.V., Martins P.A.F., Bay N. Predicting the onset of cracks in bulk metal forming by ductile damage criteria. Procedia Engineering, 2017, vol. 207, pp. 2048–2053. doi: 10.1016/j.proeng.2017.10.1106.
  13. Vlasov A.V. On the application of the Cockroft–Latham criterion to predict fracture in cold forging. Izvestiya Tulskogo gosudarstvennogo universiteta. Tekhnicheskie nauki, 2017, no. 11-1, pp. 46–58. EDN: ZVLXNV.
  14. Matveev M.A. Numerical estimation of the probability of metal failure under hot plastic deformation by means of the Cockcroft – Latham criterion. Nauchno-tekhnicheskie vedomosti SPbPU. Estestvennye i inzhenernye nauki, 2017, vol. 23, no. 2, pp. 109–126. doi: 10.18721/JEST.230211.
  15. Shtremel M.A. Razrushenie. Razrushenie materialov [Destruction. Destruction of materials]. Moscow, MISIS Publ., 2014. Kn. 1, 670 p.
  16. Chen Xuewen, Yang Zhen, Zhang Bo, Sun Jiawei, Su Zhiyi, Mao Yiran. An Inverse Optimization Method for the Parameter Determination of the High-Temperature Damage Model and High-Temperature Damage Graph of Ti6Al4V Alloy. Materials, 2023, vol. 16, article number 4770. doi: 10.3390/ma16134770.
  17. Khudododova G.D., Kulyasova O.B., Nafikov R.K., Islamgaliev R.K. The structure and mechanical properties of biomedical magnesium alloy Mg–1%Zn–0.2%Ca. Frontier Materials & Technologies, 2022, no. 2, pp. 105–112. doi: 10.18323/2782-4039-2022-2-105-112.
  18. Kulyasova O.B., Islamgaliev R.K. The influence of the structural changes in the Mg-1%Zn-0,2%Ca alloy, produced by ECAP on its mechanical properties. Vestnik Ufimskogo gosudarstvennogo aviatsionnogo tekhnicheskogo universiteta, 2018, vol. 22, no. 3, pp. 24–29. EDN: YAAWLZ.
  19. Cockcroft M.G., Latham D.J. Ductility and Workability of metals. Journal of the Institute of Metals, 1968, vol. 96, pp. 33–39.
  20. Botkin A.V., Valiev R.Z., Kublikova A.A., Dubinina S.V. Determining the shear plasticity of metals on the basis of torsion-tension tests. Steel in Translation, 2013, vol. 43, no. 6, pp. 360–364. doi: 10.3103/S096709121306003X.
  21. Gao Lin, Zhao Jiang, Quan Guo-zheng, Xiong Wei, An Chao. Study on the Evolution of Damage Degradation at Different Temperatures and Strain Rates for Ti-6Al-4V Alloy. High Temperature Materials and Processes, 2018, vol. 38, pp. 332–341. doi: 10.1515/htmp-2018-0091.
  22. Kozulyn A.A., Skripnyak V.A., Krasnoveikin V.A., Skripnyak V.V., Karavatskii A.K. An investigation of physico-mechanical properties of ultrafine-grained magnesium alloys subjected to severe plastic deformation. Russian Physics Journal, 2015, vol. 57, no. 9, pp. 1261–1267. doi: 10.1007/s11182-015-0372-5.
  23. Iwahashi Y., Wang J., Horita Z., Nemoto M., Langdon T.G. Principle of equal-channel angular pressing for the processing of ultra-fine-grained materials. Scripta Materialia, 1996, vol. 35, no. 2, pp. 143–146. doi: 10.1016/1359-6462(96)00107-8.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Volkova E.P., Khudododova G.D., Botkin A.V., Valiev R.Z.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies