Combination of cryogenic deformation and electropulse processing as a way to produce ultrafine-grain metals

Cover Page

Cite item

Abstract

The data of a comparative analysis of the structure and hardness of pure metals with a face-centered cubic lattice – aluminum, nickel and copper, subjected to complex thermomechanical treatment (TMT), including isothermal cryogenic rolling at liquid nitrogen temperature and subsequent high-density electropulse treatment (EPT) were presented. The main stages, features and advantages of TMT, which first ensure strong work hardening of the processed material due to deformation at low temperatures and then its ultra-fast contact electropulse heating up to a specified temperature, were considered. A multi-level analysis of the metals structure evolution due to TMT was carried out using modern methods of scanning electron microscopy and X-ray diffractometry, recording a wide range of its linear and angular parameters. The kinetics and nature of the processes of the metals structure evolution under cryogenic rolling and EPT, their driving forces and controlling factors, as well as general patterns and temperature intervals of activation of the deformation structure recovery and recrystallization influenced by an electric pulse are identified and discussed. Based on the results of the analysis of the structural and mechanical behaviour of metals, it was concluded that the combination of severe plastic cryogenic deformation and a single-step treatment with ultrashort alternating current pulses is an effective way to obtain semi-finished products with controlled parameters of their structure and properties, including high-strength ultrafine-grain rolled products. At that the phenomenology and nature of the strengthening/softening of metals during cryogenic rolling and subsequent electropulsing are similar to those observed under cold rolling and furnace annealing.

About the authors

Mikhail Vyacheslavovich Markushev

Institute for Metals Superplasticity Problems of RAS, Ufa

Author for correspondence.
Email: mvmark@imsp.ru

Doctor of Sciences (Engineering), senior researcher, Head of laboratory

Russian Federation

Elena Viktorovna Avtokratova

Institute for Metals Superplasticity Problems of RAS, Ufa

Email: avtokratova@imsp.ru

PhD (Engineering), senior researcher

Russian Federation

Aigul Khammatovna Valeeva

Institute for Metals Superplasticity Problems of RAS, Ufa

Email: valeevs@mail.ru
ORCID iD: 0000-0003-4305-4538

PhD (Engineering), researcher

Russian Federation

Irshat Shamilovich Valeev

Institute for Metals Superplasticity Problems of RAS, Ufa

Email: fake@neicon.ru
ORCID iD: 0009-0002-5162-7324

PhD (Engineering), researcher

Russian Federation

Rafis Raisovich Ilyasov

Institute for Metals Superplasticity Problems of RAS, Ufa

Email: diesel874@yandex.ru
ORCID iD: 0000-0003-0195-1206

junior researcher

Russian Federation

Stanislav Vatslavovich Krymsky

Institute for Metals Superplasticity Problems of RAS, Ufa

Email: stkr_imsp@mail.ru
ORCID iD: 0000-0002-1534-3239

PhD (Engineering), Head of laboratory

Russian Federation

Oleg Shamilevich Sitdikov

Institute for Metals Superplasticity Problems of RAS, Ufa

Email: sitdikov.oleg.1967@mail.ru

PhD (Physics and Mathematics), senior researcher

Russian Federation

References

  1. Estrin Y., Vinogradov A. Extreme grain refinement by severe plastic deformation: A wealth of challenging science. Acta Materialia, 2013, vol. 61, no. 3, pp. 782–817. doi: 10.1016/j.actamat.2012.10.038.
  2. Zhilyaev A.P., Pshenichnyuk A.I., Utyashev F.Z., Raab G.I. Superplasticity and Grain Boundaries in Ultrafine-Grained Materials. Amsterdam, Elsevier Publ., 2020. 416 p.
  3. Edalati K., Bachmaier A., Beloshenko V.A., Beygelzimer Y., Blank V.D., Botta W.J. Nanomaterials by severe plastic deformation: review of historical developments and recent advances. Materials Research Letters, 2022, vol. 10, no. 4, pp. 163–256. doi: 10.1080/21663831.2022.2029779.
  4. Pan Dong, Zhao Yuguang, Xu Xiaofeng, Wang Yitong, Jiang Wenqiang, Ju Hong. Effect of High-Energy and Instantaneous Electropulsing Treatment on Microstructure and Properties of 42CrMo Steel. Acta Metall Sin, 2018, vol. 54, no. 9, pp. 1245–1252. doi: 10.11900/0412.1961.2017.00562.
  5. Konkova T., Valeev I., Mironov S., Korznikov A., Myshlyaev M.M., Semiatin S.L. Effect of electric-current pulses on grain-structure evolution in cryogenically rolled copper. Journal of Materials Research, 2014, vol. 29, no. 22, pp. 2727–2737. doi: 10.1557/jmr.2014.299.
  6. Konkova T., Valeev I., Mironov S., Korznikov A., Korznikova G., Myshlyaev M.M., Semiatin S.L. Microstructure response of cryogenically-rolled Cu–30Zn brass to electric-current pulsing. Journal of Alloys and Compounds, 2016, vol. 659, pp. 184–192. doi: 10.1016/j.jallcom.2015.11.059.
  7. Khaymovich P.A. Cryodeformation of metals under all-around compression (Review Article). Fizika nizkikh temperatur, 2018, vol. 44, no. 5, pp. 463–490. EDN: YTJSLG.
  8. Panigrahi S.K., Jayaganthan R. A Study on the Combined Treatment of Cryorolling, Short-Annealing, and Aging for the Development of Ultrafine-Grained Al 6063 Alloy with Enhanced Strength and Ductility. Metallurgical and Materials Transactions: A, 2010, vol. 41, pp. 2675–2690. doi: 10.1007/s11661-010-0328-x.
  9. Magalhães D.C.C., Kliauga A.M., Ferrante M., Sordi V.L. Plastic deformation of FCC alloys at cryogenic temperature: the effect of stacking-fault energy on microstructure and tensile behavior. Journal of Materials Science, 2017, vol. 52, pp. 7466–7478. doi: 10.1007/s10853-017-0979-8.
  10. Ma E. Eight Routes to Improve the Tensile Ductility of Bulk Nanostructured Metals and Alloys. JOM, 2006, vol. 58, no. 4, pp. 49–53. doi: 10.1007/s11837-006-0215-5.
  11. Krymskiy S., Sitdikov O., Avtokratova E., Markushev M. 2024 aluminum alloy ultrahigh-strength sheet due to two-level nanostructuring under cryorolling and heat treatment. Transactions of Nonferrous Metals Society of China, 2020, vol. 30, no. 1, pp. 14–26. doi: 10.1016/S1003-6326(19)65176-9.
  12. Sheng Yinying, Hua Youlu, Wang Xiaojian, Zhao Xueyang, Chen Lianxi, Zhou Hanyu, Wang James, Berndt Ch.C., Li Wei. Application of High-Density Electropulsing to Improve the Performance of Metallic Materials: Mechanisms, Microstructure and Properties. Materials, 2018, vol. 11, no. 2, article number 185. doi: 10.3390/ma11020185.
  13. Kang Kaijiao, Li Dayong, Wang Ao, Shi Dequan, Gao Guili, Xu Zhenyu. Experimental investigation on aging treatment of 7050 alloy assisted by electric pulse. Results in Physics, 2020, vol. 3, article number 103016. doi: 10.1016/j.rinp.2020.103016.
  14. Xua Hong, Liu Meng, Wang Yu-peng, Ma Pin-kui, Bai Ming, Jiang Bo, Guo Zhi-peng, Zou Yu-jie. Refined microstructure and dispersed precipitates in a gradient rolled AZ91 alloy under pulsed current. Materialia, 2021, vol. 20, article number 101245. doi: 10.1016/j.mtla.2021.101245.
  15. Xu Zhutian, Jiang Tianhao, Huang Jihui, Peng Linfa, Lai Xinmin, Fu M.W. Electroplasticity in electrically-assisted forming: Process phenomena, performances and modeling. International Journal of Machine Tools and Manufacture, 2022, vol. 175, article number 103871. doi: 10.1016/j.ijmachtools.2022.103871.
  16. Kim Moon-Jo, Yoon Sangmoon, Park S. et al. Elucidating the origin of electroplasticity in metallic materials. Applied Materials Today, 2020, vol. 21, article number 100874. doi: 10.1016/j.apmt.2020.100874.
  17. Ruszkiewicz B.J., Mears L., Roth J.T. Investigation of Heterogeneous Joule Heating as the Explanation for the Transient Electroplastic Stress Drop in Pulsed Tension of 7075-T6 Aluminum. Journal of Manufacturing Science and Engineering, 2018, vol. 140, no. 9, article number 091014. doi: 10.1115/1.4040349.
  18. Humphreys F.J., Hatherly M. Recrystallization and Related Annealing Phenomena. 2nd ed. Amsterdam, Elsevier Publ., 2004. 658 p.
  19. Conrad H. Electroplasticity in metals and ceramics. Materials Science and Engineering: A, 2000, vol. 287, no. 2, pp. 276–287. doi: 10.1016/S0921-5093(00)00786-3.
  20. Grimm T.J., Mears L.M. Skin effects in electrically assisted manufacturing. Manufacturing Letters, 2022, vol. 34, pp. 67–70. doi: 10.1016/j.mfglet.2022.09.006.
  21. He Changshu, Zhang Yudong, Wang Y.N., Zhao Xingyong, Zuo Liang, Esling С. Texture and microstructure development in cold-rolled interstitial free (IF) steel sheet during electric field annealing. Scripta Materialia, 2003, vol. 48, no. 6, pp. 737–742. doi: 10.1016/S1359-6462(02)00552-3.
  22. Shneerson G.A., Dolotenko M.I., Krivosheev S.I. Strong and Superstrong Pulsed Magnetic Fields Generation. Berlin, De Gruyter Publ., 2014. 439 p. doi: 10.1515/9783110252576.
  23. Valeev I.Sh., Valeeva A.Kh., Ilyasov R.R., Avtokratova E.V., Krymskiy S.V., Sitdikov O.Sh., Markushev M.V. Influence of electric pulse treatment on structure and hardness of cryorolled aluminum. Pisma o materialakh, 2021, vol. 11, no. 3, pp. 351–356. doi: 10.22226/2410-3535-2021-3-351-356.
  24. Markushev M.V., Ilyasov R.R., Krymskiy S.V., Valeev I.Sh., Sitdikov O.Sh. Structue and strength of fine-grain copper after cryorolling and single electro-pulsing of different capacity. Pisma o materialakh, 2021, vol. 11, no. 4, pp. 491–496. doi: 10.22226/2410-3535-2021-4-491-496.
  25. Markushev M., Valeev I., Valeeva A., Ilyasov R., Avtokratova E., Krymskiy S., Sitdikov O. Effect of electric pulsing on the structure, texture and hardness of cryorolled fine-grain copper. Facta Universitatis. Series: Mechanical Engineering, 2022, pp. 1–12.
  26. Markushev M.V., Valeev I.Sh., Avtokratova E.V., Ilyasov R.R., Valeeva A.K., Krimsky S.V., Sitdikov O.S. Effect of high-dense electropulsing with different energies on the structure and strength of nickel cryorolled to different strains. Letters on Materials, 2023, vol. 13, no. 2, pp. 126–131. doi: 10.22226/2410-3535-2023-2-126-131.
  27. Danyuk A., Merson D., Yasnikov I., Agletdinov E., Afanasyev M., Vinogradov A. The effect of stacking fault energy on acoustic emission in pure metals with face-centered crystal lattice. Letters on Materials, 2017, vol. 7, no. 4, pp. 437–441. doi: 10.22226/2410-3535-2017-4-437-441.
  28. Sarma V.S., Wang Jun, Jian W.W., Kauffmann A., Conrad H., Freudenberger J., Zhu Yuntian T. Role of stacking fault energy in strengthening due to cryo-deformation of FCC metals. Materials Science and Engineering: A, 2010, vol. 527, no. 29-30, pp. 7624–7630. doi: 10.1016/j.msea.2010.08.015.
  29. Zhao Yonghao, Liao X.Z., Zhu Yuntian, Horita Z., Langdon T.G. Influence of stacking fault energy on nanostructure under high pressure torsion. Materials Science and Engineering: A, 2005, vol. 410-411, pp. 188–193. doi: 10.1016/j.msea.2005.08.074.
  30. Belyakov A., Sakai T., Miura H., Kaibyshev R., Tsuzaki K. Continuous recrystallization in austenitic stainless steel after large strain deformation. Acta Materialia, 2002, vol. 50, no. 6, pp. 1547–1557. doi: 10.1016/S1359-6454(02)00013-7.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c)



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies