The kinetics of L10 superstructure formation in the Cu–56Au alloy (at. %): resistometric study

Cover Page

Cite item

Abstract

Due to the improved strength properties compared to the equiatomic Cu–50 at. % Au alloy, non-stoichiometric Cu–56 at. % Au alloy can be used both in dentistry and as a corrosion-resistant conductor of weak electrical signals in tool engineering. The work studies the kinetics of the disorder→order phase transformation in the Cu–56Au alloy, during which the disordered fcc lattice (A1-phase) is rearranged into an atomically ordered one with the L10 superstructure. The initial disordered state of the alloy was obtained in two ways: applying plastic deformation by 90 % or quenching at a temperature of above 600 °C (i. e., from the region of the A1-phase existence). To form the L10 superstructure, annealing was carried out at temperatures of 200, 225, and 250 °C. The annealing duration ranged from 1 h to 2 months. Resistometry was chosen as the main technique to study the kinetics of the disorder→order transformation. The temperature dependences of the electrical resistivity of the alloy in various structural states are obtained. The authors constructed the graphs of the electrical resistance dependence on the annealing time logarithm, based on which, the rate of the new phase formation was estimated. To evaluate the structural state of the alloy at various transformation stages, the authors used X-ray diffraction analysis (XRD). The crystal structure rearrangement during the transformation is shown by the example of splitting the initial cubic A1-phase peak (200) into two tetragonal ordered L10 phase peaks – (200) and (002). Based on the resistometry and X-ray diffraction analysis data, the authors carried out a quantitative assessment of the rate of the disorder→order phase transformation in the alloy under the study. It is established that the values of the converted volume fraction (resistometry) and the long-range order degree (X-ray diffraction analysis) are close. The study shows that in the temperature range of 200–250 °C, the rate of atomic ordering according to the L10 type in the nonstoichiometric alloy Cu–56 at. % Au is maximum at 250 °C. It is identified that the disorder→order transformation in the initially quenched specimens of the investigated alloy proceeds approximately an order of magnitude faster than in preliminarily deformed specimens.

About the authors

Polina O. Podgorbunskaya

Ural Federal University named after the first President of Russia B.N. Yeltsin, Yekaterinburg;
M.N. Mikheev Institute of Metal Physics of Ural Branch of RAS, Yekaterinburg

Author for correspondence.
Email: polina.podgorbunskaya@imp.uran.ru

student, laboratory assistant of Strength Laboratory

Russian Federation

Dmitry A. Zgibnev

Ural Federal University named after the first President of Russia B.N. Yeltsin, Yekaterinburg;
M.N. Mikheev Institute of Metal Physics of Ural Branch of RAS, Yekaterinburg

Email: ske4study@gmail.com

student, laboratory assistant of Strength Laboratory

Russian Federation

Alyona A. Gavrilova

Ural Federal University named after the first President of Russia B.N. Yeltsin, Yekaterinburg;
M.N. Mikheev Institute of Metal Physics of Ural Branch of RAS, Yekaterinburg

Email: Gawrilowa.aliona2015@gmail.com

student, laboratory assistant of Strength Laboratory

Russian Federation

Oksana S. Novikova

M.N. Mikheev Institute of Metal Physics of Ural Branch of RAS, Yekaterinburg

Email: novikova@imp.uran.ru
ORCID iD: 0000-0003-0474-8991

PhD (Physics and Mathematics), senior researcher of Strength Laboratory

Russian Federation

Aleksey Yu. Volkov

M.N. Mikheev Institute of Metal Physics of Ural Branch of RAS, Yekaterinburg

Email: volkov@imp.uran.ru
ORCID iD: 0000-0002-0636-6623

Doctor of Sciences (Engineering), Head of Strength Laboratory

Russian Federation

References

  1. Kurnakov N., Zemczuzny S., Zasedatelev M. Transformations in Alloys of Gold with Copper. Journal of the Institute of Metals, 1916, vol. 15, pp. 305–331.
  2. Jogansson C.H., Linde J.O. Röntgenographische und elektrische Untersuchungen der CuAu-Systems. Annalen der Physik, 1936, vol. 417, no. 1, pp. 1–48. doi: 10.1002/andp.19364170102.
  3. Hirabayashi M. Stress-Ordering Effect on Thermal Expansion of CuAu Single Crystals. Journal of the Physical Society of Japan, 1959, vol. 14, pp. 149–152. doi: 10.1143/JPSJ.14.149.
  4. Van Tendeloo G., Amelinckx S., Jeng S.J., Wayman C.M. The initial stages of ordering in CuAuI and CuAuII. Journal of Materials Science, 1986, vol. 21, pp. 4395–4402. doi: 10.1007/BF01106562.
  5. Getov L.A., ed. Khudozhestvennoe litye iz dragotsennykh metallov [Artistic casting from precious metals]. Leningrad, Mashinostroenie Publ., 223 p.
  6. Popova L.A. Structural and energy properties of bivacansions in CuAu alloy. Yugra state university bulletin, 2022, vol. 66, no. 3, pp. 145–151. doi: 10.18822/byusu202203145-151.
  7. Larcher M., Cayron C., Blatter A., Soulignac R., Logé R.E. Electron backscatter diffraction study of variant selection during ordering phase transformation in L10-type red gold alloy. Journal of Applied Crystallography, 2019, vol. 52, pp. 1202–1213. doi: 10.1107/S1600576719011890.
  8. Fedorov P.P., Volkov S.N. Au-Cu phase diagram. Russian journal of inorganic chemistry, 2016, vol. 61, no. 6, pp. 809–812. doi: 10.7868/S0044457X16060061.
  9. Malyshev V.M., Rumyantsev D.V. Zoloto [Gold]. Moscow, Metallurgiya Publ., 1979. 288 p.
  10. Trong D.N., Long V.C., Saraç U., Quoc V.D., Ţălu Ş. First-Principles Calculations of Crystallographic and Electronic Structural Properties of Au-Cu Alloys. Journal of Composites Science, 2022, vol. 6, no. 12, pp. 383. DOI: https://doi.org/10.3390/jcs6120383.
  11. Volkov A.Y., Kazantsev V.A. Impact of the initial state on the structure and properties of the ordered CuAu alloy. The physics of metals and metallography, 2012, vol. 113, no. 1, pp. 66–76. doi: 10.1134/S0031918X12010127.
  12. Lamiri I., Martinez-Blanco D., Abdelbaky M.S.M., Mari D., Hamana D., García-Granda S. Investigation of the order-disorder phase transition series in AuCu by in-situ temperature XRD and mechanical spectroscopy. Journal of Alloys and Compounds, 2019, vol. 770, pp. 748–754. doi: 10.1016/j.jallcom.2018.08.094.
  13. Garcia-Gonzalez M., Van Petegem S., Baluc N., Hocine S., Dupraz M., Lalire F., Van Swygenhoven H. Enhanced precipitate growth at reduced temperatures during chemical ordering in deformed red gold alloys. Scripta Materialia, 2019, vol. 170, pp. 129–133. doi: 10.1016/j.scriptamat.2019.05.038.
  14. Volkov A.Yu., Antonova O.V., Glukhov A.V., Komkova D.A., Antonov B.D., Kostina A.E., Livinets A.A., Generalova K.N. Features of the disorder-order phase transition in non-stoichoimetric Cu-56at%Au alloy. Journal of Alloys and Compounds, 2022, vol. 891, p. 161938. doi: 10.1016/j.jallcom.2021.161938.
  15. Farooq Z., Ali R., Ahmed N., Fahad M., Ahmad A., Yaseen M., Mahmood M.H.R., Hussain S., Rehan I., Zubair Khan M., Jan T., Qayyum M.A., Afzal M., Mahr M.S., Shafique M. Determination of the Gold Alloys Composition by Laser-Induced Plasma Spectroscopy Using an Algorithm for Matching Experimental and Calculated Values of Electron Number Density. Journal of Applied Spectroscopy, 2023, vol. 90, pp. 126–136. doi: 10.1007/s10812-023-01513-x.
  16. Gafner Y.Y., Gafner S.L., Golovenko Z.V. Analysis of the size distribution of binary Cu-Au nanoparticles during synthesis from a gaseous medium. Letters on Materials, 2020, vol. 10, no. 1, pp. 33–37. doi: 10.22226/2410-3535-2020-1-33-37.
  17. Generalova K.N., Glukhov A.V., Volkov A.Y. Kinetics of atomic ordering by L10-type in non-stoichiometric copper-gold alloy: X-ray analysis. Bulletin of Perm national research polytechnic university. Mechanical engineering, materials science, 2018, vol. 20, no. 2, pp. 75–85. doi: 10.15593/2224-9877/2018.2.09.
  18. Volkov A.Yu., Novikova O.S., Antonov B.D. The kinetics of ordering in an equiatomic CuPd alloy: A resistometric study. Journal of Alloys and Compounds, 2013, vol. 581, pp. 625–631. doi: 10.1016/j.jallcom.2013.07.132.
  19. Glezer A.M., Timshin I.A., Shchetinin I.V., Gorshenkov M.V., Sundeev R.V., Ezhova A.G. Unusual behavior of long-range ordered parameter in Fe3Al superstructure under severe plastic deformation in Bridgman anvils. Journal of Alloys and Compounds, 2018, vol. 744, pp. 791–796. doi: 10.1016/j.jallcom.2018.02.124.
  20. Valiev R.Z., Aleksandrov I.V. Nanostrukturnye materialy, poluchennye intensivnoy plasticheskoy deformatsiey [Nanostructured materials obtained by severe plastic deformation]. Moscow, Logos Publ., 2000. 271 p.
  21. Malis O., Ludwig K.F. Kinetics of phase transitions in equiatomic CuAu. Physical Review B, 1999, vol. 60, no. 21, pp. 14675–14682. doi: 10.1103/PhysRevB.60.14675.
  22. Christian J.W. Teoriya prevrashcheniy v metallakh i splavakh [The theory of transformation in metals and alloys]. Vol. 1. Moscow, Mir Publ., 1978. 806 p.
  23. Kim M.J., Flanagan W.F. The effect of plastic deformation on the resistivity and Hall Effect of copper-palladium and gold-palladium alloys. Acta Metallurgica, 1967, vol. 15, pp. 735–745. doi: 10.1016/0001-6160(67)90354-9.
  24. Garcia-Gonzalez M., Van Petegem S., Baluc N., Dupraz M., Honkimaki V., Lalire F., Van Swygenhoven H. Influence of thermo-mechanical history on the ordering kinetics in 18 carat Au alloys. Acta Materialia, 2020, vol. 191, pp. 186–197. doi: 10.1016/j.actamat.2020.03.032.
  25. Volkov A.Yu., Antonova O.V., Komkova D.A., Glukhov A.V., Volkova E.G., Livinets A.A., Podgorbunskaya P.O., Antonov B.D. Effect of moderate plastic deformation on structure and properties of the ordered Cu-56Au (at.%) alloy. Materials Science and Engineering A, 2023, vol. 865, p. 144626. doi: 10.1016/j.msea.2023.144626.
  26. Cahn R.W. Recovery, Strain-Age-Hardening and Recrystallization in Deformed Intermetallics. High Temperature Aluminides and Intermetallics / eds. Whang S.H. et al. The Minerals, Metals & Materials Society, 1990, p. 245–270.
  27. Grinberg B.A., Ivanov M.A. Intermetallidy Ni3Al i TiAl: mikrostruktura, leformatsionnoe povedenie [Intermetallics Ni3Al and TiAl: microstructure, deformation behavior]. Ekaterinburg, UrO RAN Publ., 2002. 359 p.
  28. Volkov A.Yu., Podgorbunskaya P.O., Novikova O.S., Valiullin A.I., Glukhov A.V., Kruglikov N.A. Atomic ordering kinetics of Cu-56at.%Au alloy at a temperature of 250 °С. Inorganic Materials. 2023 (In print).
  29. Grinberg B.A., Cyutkina V.I. Novye metody uprochneniya uporyadochennykh splavov [New methods for strengthening ordered alloys]. Moscow, Metallurgiya Publ., 1985. 175 p.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c)



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies