Simulation of contact thermal resistance when designing processing equipment
- Authors: Denisenko A.F.1, Podkruglyak L.Y.1
-
Affiliations:
- Samara State Technical University, Samara
- Issue: No 3 (2023)
- Pages: 31-42
- Section: Articles
- URL: https://vektornaukitech.ru/jour/article/view/866
- DOI: https://doi.org/10.18323/2782-4039-2023-3-65-3
- ID: 866
Cite item
Abstract
Analysis of the processing equipment structures when designing according to the temperature criterion is a necessary guarantee of ensuring the required performance characteristics. The presence of a significant number of parts in the processing equipment units and mechanisms requires, when designing, the prediction of the heat flow passage through the joints. When simulating contact thermal resistance, the variety of requirements for a joint can be taken into account by introducing a pseudolayer into the contact zone. The paper presents test results of the proposed regression dependence of the temperature change when the heat flow goes through the pseudolayer obtained considering four significant factors: the pseudolayer thickness, the nominal pressure, the material yield strength, and the actual contact zone location. The adequacy of the specified regression dependence was verified experimentally and applying numerical simulation using large-block finite elements. To describe the process of heat transfer in the thermal model elements, the authors determined contact thermal resistances for several conditions for the heat flow propagation: from one finite element to another within one part; from one finite element to another located in an adjacent part; heat flow passing through closed cavities; heat flow propagation into the environment for finite elements located on the outer (free) contour of the part. The experiments showed a good agreement between the experimental data and the simulation results. The application of large-block finite elements based on the proposed contact thermal resistance model allowed bringing the FE simulation technique to engineering use without complex software.
About the authors
Aleksandr F. Denisenko
Samara State Technical University, Samara
Author for correspondence.
Email: sammortor@yandex.ru
ORCID iD: 0000-0001-6393-2831
Doctor of Sciences (Engineering), Professor, professor of Chair “Mechanical Engineering Technology, Machines and Tools”
РоссияLyubov Yu. Podkruglyak
Samara State Technical University, Samara
Email: podkruglak@mail.ru
ORCID iD: 0009-0006-6735-4454
postgraduate student of Chair “Mechanical Engineering Technology, Machines and Tools”
РоссияReferences
- Huang Z., Liu Y., Du L., Yang H. Thermal error analysis, modeling and compensation of five-axis machine tools. Journal of Mechanical Science and Technology, 2020, vol. 34, pp. 4295–4305. doi: 10.1007/s12206-020-0920-y.
- Mares M., Horejs O., Havlik L. Thermal error compensation of a 5-axis machine tool using indigenous temperature sensors and CNC integrated Python code validated with a machined test piece. Precision Engineering, 2021, vol. 66, pp. 21–30. doi: 10.1016/j.precisioneng.2020.06.010.
- Week M., Mckeown P., Bonse R., Herbst U. Reduction and compensation of thermal error in machine tools. CIRP Annals, 1995, vol. 44, no. 2, pp. 589–598. doi: 10.1016/S0007-8506(07)60506-X.
- Zhou Н., Hu Р., Tan Н., Chen J., Liu G. Modelling and compensation of thermal deformation for machine tool based on the real-time data of the CNC system. Procedia Manufacturing, 2018, vol. 26, pp. 1137–1146. doi: 10.1016/j.promfg.2018.07.150.
- Wei X., Ye H., Miao E., Pan Q. Thermal error modeling and compensation based on Gaussian process regression for CNC machine tools. Precision Engineering, 2022, vol. 77, pp. 65–76. doi: 10.1016/j.precisioneng.2022.05.008.
- Živković A.M., Zeljković M.V., Mlađenović C.D., Tabaković S.T., Milojević Z.L., Hadžistević M.J. A Study of Thermal Behavior of the Machine Tool Spindle. Thermal Science, 2019, vol. 23, no. 3B, pp. 2117–2130. doi: 10.2298/TSCI180129118Z.
- Kang C.M., Zhao C.Y., Zhang J.Q. Thermal behavior analysis and experimental study on the vertical machining center spindle. Transactions of the Canadian Society for Mechanical Engineering, 2020, vol. 44, no. 3, pp. 344–351. doi: 10.1139/tcsme-2019-0124.
- Cheng Y., Zhang X., Zhang G., Jiang W., Li B. Thermal error analysis and modeling for high-speed motorized spindles based on LSTM-CNN. International Journal of Advanced Manufacturing Technology, 2022, vol. 121, pp. 3243–3257. doi: 10.1007/s00170-022-09563-9.
- Fu С.-В., Tian А.-Н., Yau Н.-Т., Hoang М.-С. Тhermal monitoring and thermal deformation prediction for spherical machine tool spindles. Thermal Science, 2019, vol. 23, no. 4, pp. 2271–2279. doi: 10.2298/TSCI1904271F.
- Denisenko A.F., Grishin R.G. Optimizing the layout of a CNC lathe. Frontier Materials & Technologies, 2022, no. 2, pp. 17–27. doi: 10.18323/2782-4039-2022-2-17-27.
- Dornyak O.R., Popov V.M., Anashkina N.A. Mathematical modeling of contact thermal resistance for elastostrained solid bodies by the methods of multiphase systems mechanics. Journal of Engineering Physics and Thermophysics, 2019, vol. 92, no. 5, pp. 1117–1129. EDN: RUNKGS.
- Kuznetsov A.P. Teplovoy rezhim metallorezhushchikh stankov [Thermal regime of machine tools]. Moscow, Yanus-K Publ., 2013. 480 p.
- Alferov V.I. Calculation of heat resistance in the design of metal-cutting machines. STIN, 2006, no. 4, pp. 7–10. EDN: KTURXZ.
- Mesnyankin S.Y., Vikulov A.G., Vikulov D.G. Solid-solid thermal contact problems: current understanding. Physics-Uspekhi, 2009, vol. 52, no. 9, pp. 891–914. EDN: MWUFBJ.
- Madhusudana C.V. Thermal Contact Conductance. 2nd ed. Sydney, Springer Publ., 2014. 260 p. doi: 10.1007/978-3-319-01276-6.
- Aalilija A., Gandin C.-A., Hachem E. A simple and efficient numerical model for thermal contact resistance based on diffuse interface immersed boundary method. International Journal of Thermal Sciences, 2021, vol. 166, article number 106817. doi: 10.1016/j.ijthermalsci.2020.106817.
- Ivanov A.S., Izmailov V.V. Thermal conductivity of a plane joint. Russian Engineering Research, 2009, vol. 29, no. 7, pp. 671–673. EDN: LLSSLZ.
- Popov V.M., Dornyak O.R., Latynin A.V., Lushnikova E.N. Heat exchange in the area of surface contact with shape deviations. Voronezhskiy nauchno-tekhnicheskiy vestnik, 2020, vol. 4, no. 4, pp. 64–69. doi: 10.34220/2311-8873-2021-4-4-64-69.
- Xian Y., Zhang P., Zhai S., Yuan P., Yang D. Experimental characterization methods for thermal contact resistance: A review. Applied Thermal Engineering, 2018, vol. 130, pp. 1530–1548. doi: 10.1016/j.applthermaleng.2017.10.163.
- Denisenko A.F., Podkruglyak L.Yu. Construction of a regression model of thermal resistance of a contact pseudo medium. Izvestiya Samarskogo nauchnogo tsentra Rossiyskoy akademii nauk, 2021, vol. 23, no. 3, pp. 47–54. doi: 10.37313/1990-5378-2021-23-3-47-54.
- Denisenko A.F., Grishin R.G., Podkruglyak L.Y. Formation of Contact Thermal Resistance Based on the Analysis of the Characteristics of the Pseudo-Medium. Lecture Notes in Mechanical Engineering, 2022, pp. 221–229. doi: 10.1007/978-3-030-85233-7_26.
- Dmitriev V.A., Denisenko A.F., Podkruglyak L.Yu. Determination of the significance of factors in the modeling of contact thermal resistance. Mekhatronika, avtomatika i robototekhnika, 2023, no. 11, pp. 169–172. doi: 10.26160/2541-8637-2023-11-169-172.
- Khokhlov V.M. Calculation of contour contact areas and pressures. Izvestiya vysshikh uchebnykh zavedeniy. Mashinostroenie, 1990, no. 4, pp. 20–24. EDN: TNZQKP.
- Khokhlov V.M. Roughness of surfaces of elastically contacting bodies. Izvestiya vysshikh uchebnykh zavedeniy. Mashinostroenie, 1990, no. 10, pp. 109–113.
- Denisenko A.F., Podkruglyak L.Yu. Development of the heat model of the spindle support metal cutting machine. Izvestiya Samarskogo nauchnogo tsentra Rossiyskoy akademii nauk, 2020, vol. 22, no. 3, pp. 49–55. doi: 10.37313/1990-5378-2020-22-3-49-55.