The study of supersaturated solid solution decomposition in magnesium-rich aluminum alloys with scandium and hafnium additions

Cover Page

Cite item

Full Text

Abstract

Magnesium-rich aluminum alloys with small scandium additives are widely used in many branches of modern industry due to the high level of their mechanical properties. However, the issue of low thermal stability of Al3Sc particles, which does not allow performing deformation processing of this group of alloys at a temperature above 400 °С, continues to be relevant. Hafnium addition can become one of the ways to solve this problem as hafnium forms a shell around the Al3Sc particles and, due to the low diffusion coefficient in the aluminum matrix, reduces their coagulation rate. The paper studies the influence of addition of 0.2 % and 0.5 % Hf on the electrical conductivity and the process of supersaturated solid solution decomposition, as well as on the size and quantity of nanoparticles in the 1570 magnesium-rich aluminum alloy at its thermal treatment. The authors studied the kinetics of supersaturated solid solution decomposition in the 1570, 1570–0.2Hf, and 1570–0.5Hf alloys by the electrical conductivity measuring and constructed C-curves describing the supersaturated solid solution decomposition in the studied alloys in the temperature range of 260–440 °С. Besides, using transmission electron microscopy, the strengthening nanoparticles of the 1570 and 1570–0.5Hf alloys were studied during heating to 370 °C and 4-hour soaking. The study showed that hafnium addition significantly slows down the supersaturated solid solution decomposition in the 1570 alloy. The authors identified that in the alloys with hafnium additives, the supersaturated solid solution decomposition is the most intense at a temperature of 350 °С, and in the alloys without hafnium – at a temperature of 430 °С. The transmission microscopy data confirm that the 1570 alloy without hafnium contains 3–4.5 times more nanoparticles than the 1570–0.5Hf alloy.

About the authors

Aleksandr M. Drits

Academician S.P. Korolev Samara National Research University, Samara;
JSC “Arconic SMZ”, Samara

Email: dritsam@gmail.com
ORCID iD: 0000-0002-9468-8736

PhD (Engineering), leading researcher of the Industrial Research Laboratory No. 4 (ONIL-4), Director of Business and Technology Development

Russian Federation

Evgenii V. Aryshenskii

Academician S.P. Korolev Samara National Research University, Samara

Author for correspondence.
Email: ar-evgenii@yandex.ru
ORCID iD: 0000-0003-3875-7749

PhD (Engineering), Associate Professor, scientific supervisor of the Industrial Research Laboratory No. 4 (ONIL-4)

Russian Federation

Egor A. Kudryavtsev

Center for Collective Use “Technologies and Materials of NRU “BelSU”, Belgorod

Email: kudryavtsev@bsu.edu.ru
ORCID iD: 0000-0003-1113-0807

PhD (Engineering), researcher

Russian Federation

Igor A. Zorin

Academician S.P. Korolev Samara National Research University, Samara

Email: zorin_20@mail.ru
ORCID iD: 0000-0001-9349-2494

laboratory assistant of the Industrial Research Laboratory No. 4 (ONIL-4), student

Russian Federation

Sergey V. Konovalov

Academician S.P. Korolev Samara National Research University, Samara;
Siberian State Industrial University, Novokuznetsk

Email: konovalov@sibsiu.ru
ORCID iD: 0000-0003-4809-8660

Doctor of Sciences (Engineering), Professor, chief researcher of the Industrial Research Laboratory No. 4 (ONIL-4), Vice-Rector for Scientific and Innovative Activities

Russian Federation

References

  1. Du H., Zhang S., Zhang B., Tao X., Yao Zh., Belov N., van der Zwaag S., Liu Z. Ca-modified Al–Mg–Sc alloy with high strength at elevated temperatures due to a hierarchical microstructure. Journal of Materials Science, 2021, vol. 56, no. 28, pp. 16145–16157. doi: 10.1007/s10853-021-06310-5.
  2. Belov N.A., Naumova E.A., Akopyan T.K., Doroshenko V.V. Phase diagram of the Al-Ca-Fe-Si system and its application for the design of aluminum matrix composites. JOM, 2018, vol. 70, no. 11, pp. 2710–2715. doi: 10.1007/s11837-018-2948-3.
  3. Konyukhov A.D., Drits A.M., Shurtakov A.K. Properties of 1565chM alloy and its weld joints. Tekhnologiya legkikh splavov, 2013, no. 3, pp. 113–120. EDN: RNJWPD.
  4. Panteleev M.D., Bakradze M.M., Skupov A.A., Shcherbakov A.V., Belozor V.E. Technological features of fusion welding of aluminum alloy V-1579. Aviatsionnye materialy i tekhnologii, 2018, no. 3, pp. 11–17. doi: 10.18577/2071-9140-2018-0-3-11-17.
  5. Aryshenskii E.V., Guk S.V., Galiev E.E., Drits A.M., Kavalla R. Possibility of application of a 1565ch alloy in the automotive industry. Russian Metallurgy (Metally), 2018, vol. 2018, no. 10, pp. 995–1001. doi: 10.1134/S0036029518100026.
  6. Langelandsvik G., Eriksson M., Akselsen O., Roven H. Wire arc additive manufacturing of AA5183 with TiC nanorarticles. International journal of advanced manufacturing technology, 2022, vol. 119, no. 1-2, pp. 1047–1058. doi: 10.1007/s00170-021-08287-6.
  7. Elagin V.I., Zakharov V.V., Filatov Yu.A., Rostova T.D. Development of promising aluminum alloys alloyed with scandium. Perspektivnye tekhnologii legkikh i spetsialnykh splavov: sbornik statey. Moscow, Fizmatlit Publ., 2006, pp. 181–193.
  8. Röyset J., Ryum N. Scandium in aluminium alloys. International Materials Reviews, 2005, vol. 50, no. 1, pp. 19–44. doi: 10.1179/174328005X14311.
  9. Zakharov V.V., Fisenko I.A., Kunyavskaya T.M. Prospects of alloying of aluminium alloys with scandium. Tekhnologiya legkikh splavov, 2020, no. 1, pp. 28–34. EDN: PDWRPX.
  10. Davydov V.G., Elagin V.I., Zakharov V.V., Rostoval D. Alloying aluminum alloys with scandium and zirconium additives. Metal Science and Heat Treatment, 1996, vol. 38, no. 8, pp. 347–352. doi: 10.1007/BF01395323.
  11. Zakharov V.V. Effect of scandium on the structure and properties of aluminum alloys. Metal Science and Heat Treatment, 2003, vol. 45, no. 7-8, pp. 246–253. doi: 10.1023/A:1027368032062.
  12. Bronz A.V., Efremov V.I., Plotnikov A.D., Chernyavskiy A.G. Alloy 1570C – material for pressurized structures of advanced reusable vehicles of RSC Energia. Kosmicheskaya tekhnika i tekhnologii, 2014, no. 4, pp. 62–67. EDN: TJKPPL.
  13. Li H-y., Li D-w., Zhu Z-x., Chen B-a., Chen X., Yang C-l., Zhang H-y., Kang W. Grain refinement mechanism of as-cast aluminum by hafnium. Transactions of Nonferrous Metals Society of China (English Edition), 2016, vol. 26, no. 12, pp. 3059–3069. doi: 10.1016/S1003-6326(16)64438-2.
  14. Hallem H., Lefebvre W., Forbord B., Danoix F., Marthinsen K. The formation of Al3(ScxZryHf1−x−y)-dispersoids in aluminium alloys. Materials Science and Engineering: A, 2006, vol. 421, no. 1-2, pp. 154–160. doi: 10.1016/j.msea.2005.11.063.
  15. Srinivasan S., Desch P.B., Schwarz R.B. Metastable phases in the Al3X (X = Ti, Zr, and Hf) intermetallic system. Scripta Metallurgica et Materiala, 1991, vol. 25, no. 11, pp. 2513–2516. doi: 10.1016/0956-716X(91)90059-A.
  16. Rokhlin L.L., Bochvar N.R., Dobatkina T.V., Tarytina I.E. Investigation of Recrystallization Process in Al-Sc-Hf Alloys. Tekhnologiya legkikh splavov, 2010, no. 1, pp. 92–99. EDN: PUUUEF.
  17. Knipling K.E., Dunand D.C., Seidman D.N. Precipitation evolution in Al–Zr and Al–Zr–Ti alloys during isothermal aging at 375–425 °C. Acta Materialia, 2008, vol. 56, no. 1, pp. 114–127. doi: 10.1016/j.actamat.2007.09.004.
  18. Knipling K.E., Dunand D.C., Seidman D.N. Precipitation evolution in Al–Zr and Al–Zr–Ti alloys during aging at 450–600 °C. Acta Materialia, 2008, vol. 56, no. 6, pp. 1182–1195. doi: 10.1016/j.actamat.2007.11.011.
  19. Harada Y., Dunand D.C. Creep properties of Al3Sc and Al3(Sc, X) intermetallics. Acta Materialia, 2000, vol. 48, no. 13, pp. 3477–3487. doi: 10.1016/S1359-6454(00)00142-7.
  20. Zakharov V.V. Kinetics of decomposition of the solid solution of scandium in aluminum in binary Al - Sc alloys. Metallovedenie i termicheskaya obrabotka metallov, 2015, no. 7, pp. 44–48. EDN: UAVTYF.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c)



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies