Planar superstructural defects in the alloys with L10 superstructure

Cover Page

Cite item

Full Text

Abstract

Planar superstructural defects have a great influence on the mechanical, functional properties of binary ordered alloys of the L10 superstructure based on the fcc lattice, but there is no complete analysis of their structure and energy in the literature. For the L10 superstructure alloys of the stoichiometric composition AB, the paper gives the expressions for calculating the sublimation energy and the energy of a planar superstructural defect in the model of hard coordination spheres and pair interatomic interactions. The crystal lattice tetragonality was not taken into account. The authors presented the ordered alloy structure as a union of four monoatomic simple cubic lattices, two of which are occupied by A atoms, and the other two by B atoms. This approach allows calculating the sublimation energy required for crystal evaporation. The first eight coordination spheres were taken into account in the work. The paper shows an algorithm for determining all possible geometrically different representations of the L10 superstructure with the same sublimation energy, gives an expression for finding the planes of occurrence of all possible conservative antiphase boundaries. The study identified that the conservative and nonconservative antiphase boundaries, as well as conservative and nonconservative boundaries of C-domains are observed in the binary ordered alloys of the L10 superstructure based on the fcc lattice. The algorithms described in this work make it possible to carry out a crystal-geometric analysis of planar defects in both binary and multicomponent ordered alloys with various superstructures.

About the authors

Albert R. Khalikov

Ufa State Aviation Technical University, Ufa

Author for correspondence.
Email: khalikov.albert.r@gmail.com
ORCID iD: 0000-0003-3663-784X

PhD (Physics and Mathematics), Associate Professor

Russian Federation

Yuri V. Bebikhov

Mirny Polytechnic Institute (branch) of North-Eastern Federal University, Mirny

Email: bebikhov.yura@mail.ru
ORCID iD: 0000-0002-8366-4819

кандидат физико-математических наук, доцент

Russian Federation

Elena A. Korznikova

Ufa State Aviation Technical University, Ufa

Email: elena.a.korznikova@gmail.com
ORCID iD: 0000-0002-5975-4849

Doctor of Sciences (Physics and Mathematics), Professor

Russian Federation

Sergey V. Dmitriev

Institute of Physics of Molecules and Crystals of Ufa Federal Research Center of the Russian Academy of Sciences, Ufa

Email: dmitriev.sergey.v@gmail.com
ORCID iD: 0000-0002-6744-4445

Doctor of Sciences (Physics and Mathematics), Professor, leading researcher

Russian Federation

References

  1. Starostenkov M.D., Dmitriev S.V., Bakaldin A.V. Antiphase boundary formation energies in L10 and L11 superstructures. Russian Physics Journal, 1993, vol. 36, no. 3, pp. 242–246. doi: 10.1007/BF00559628.
  2. Kulkarni U.D., Hata S., Nakano T., Mitsuhara M., Ikeda K., Nakashima H. Monte Carlo simulation of antiphase boundaries, growth of antiphase domains in Al5Ti3 phase in Al-rich-TiAl intermetallics. Philosophical Magazine, 2011, vol. 91, no. 22, pp. 3068–3078. doi: 10.1080/14786435.2011.563761.
  3. Khalikov A.R., Sharapov E.A., Valitov V.A., Galieva E.V., Korznikova E.A., Dmitriev S.V. Simulation of diffusion bonding of different heat resistant nickel-base alloys. Computation, 2020, vol. 8, no. 4, pp. 1–12. doi: 10.3390/computation8040102.
  4. Bahamida S., Fnidiki A., Coïsson M., Barrera G., Celegato F., Olivetti E.S., Tiberto P., Laggoun A., Boudissa M. Effect of the A1 to L10 transformation on the structure, magnetic properties of polycrystalline Fe56Pd44 alloy thin films produced by thermal evaporation technique. Thin Solid Films, 2018, vol. 668, pp. 9–13. doi: 10.1016/j.tsf.2018.10.013.
  5. Voskoboinikov R. A contribution of L10 ordered crystal structure to the high radiation tolerance of γ-TiAl intermetallics. Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms, 2019, vol. 460, pp. 92–97. doi: 10.1016/j.nimb.2019.04.080.
  6. Kumar S., Sharma K., Sharma G., Gupta A., Raghavendra Reddy V., Gome A., Das S.C. Effect of composition on L10 ordering, structural and magnetic properties of Fe100−xPtx alloy films prepared by controlled sputtering. Materials Today: Proceedings, 2021, vol. 60, pp. 945–948. doi: 10.1016/j.matpr.2021.11.222.
  7. Kohn A., Tal N., Elkayam A., Kovàcs A., Li D., Wang S., Ghannadzadeh S., Hesjedal T., Ward R.C.C. Structure of epitaxial L10-FePt/MgO perpendicular magnetic tunnel junctions. Applied Physics Letters, 2013, vol. 102, no. 6, article number 062403. doi: 10.1063/1.4791576.
  8. Rani P., Kashyap M.K., Singla R., Thakur J., Reshak A.H. Magnetism and magnetocrystalline anisotropy of tetragonally distorted L10-FeNi N alloy. Journal of Alloys and Compounds, 2020, vol. 835, article number 155325. doi: 10.1016/j.jallcom.2020.155325.
  9. Kozubski R., Kozlowski M., Wrobel J., Wejrzanowski T., Kurzydlowski K.J., Goyhenex C., Pierron-Bohnes V., Rennhofer M., Malinov S. Atomic ordering in nano-layered FePt: Multiscale Monte Carlo simulation. Computational Materials Science, 2010, vol. 49, no. 1 SUPPL, pp. S80–S84. doi: 10.1016/j.commatsci.2010.01.046.
  10. Khromov K.Yu., Pankratov I.R., Vaks V.G. Generalized Ginzburg-Landau theory of antiphase, interphase boundaries in alloys ordered with a single order parameter: B2-, L10-type ordering. Physical Review B - Condensed Matter and Materials Physics, 2005, vol. 72, no. 9, article number 094207. doi: 10.1103/PhysRevB.72.094207.
  11. Liu Y., Bierbrauer U., Seick C., Weber S.T., Hofherr M., Schmidt N.Y., Albrecht M., Steil D., Mathias S., Schneider H.C., Rethfeld B., Stadtmüller B., Aeschlimann M. Ultrafast magnetization dynamics of Mn-doped L10 FePt with spatial inhomogeneity. Journal of Magnetism and Magnetic Materials, 2020, vol. 502, article number 166477. doi: 10.1016/j.jmmm.2020.166477.
  12. Le Bouar Y., Loiseau A., Finel A. Origin of the complex wetting behavior in Co-Pt alloys. Physical Review B - Condensed Matter and Materials Physics, 2003, vol. 68, no. 22, article number 224203. doi: 10.1103/PhysRevB.68.224203.
  13. Mohri T., Ohno M., Chen Y. First-principles calculations of phase equilibria, transformation dynamics of Fe-based alloys. Journal of Phase Equilibria and Diffusion, 2006, vol. 27, no. 1, pp. 47–53. doi: 10.1361/105497106X92790.
  14. Zhang S., Qi W., Huang B. Size effect on order-disorder transition kinetics of FePt nanoparticles. Journal of Chemical Physics, 2014, vol. 140, no. 4, article number 044328. doi: 10.1063/1.4863350.
  15. Khalikov A.R., Sharapov E.A., Korznikova E.A., Potekaev A.I., Starostenkov M.D., Galieva E.V., Dmitriev S.V. Monte Carlo Simulation of Diffusion Processes in Three-Component Alloys. Russian Physics Journal, 2019, vol. 62, no. 4, pp. 691–697. doi: 10.1007/s11182-019-01765-1.
  16. Shcherbinin S.A., Krylova K.A., Chechin G.M., Soboleva E.G., Dmitriev S.V. Delocalized nonlinear vibrational modes in fcc metals. Communications in Nonlinear Science and Numerical Simulation, 2022, vol. 104, article number 106039. doi: 10.1016/j.cnsns.2021.106039.
  17. Varvaro G., Imperatori P., Laureti S., Cannas C., Ardu A., Plescia P., Capobianchi A. Synthesis of L10 alloy nanoparticles. potential and versatility of the pre-ordered precursor reduction strategy. Journal of Alloys and Compounds, 2020, vol. 846, article number 156156. doi: 10.1016/j.jallcom.2020.156156.
  18. Cherednichenko A.I., Zakharov P.V., Starostenkov M.D., Sysoeva M.O., Eremin A.M. Nonlinear supratransmission in a Pt3Al crystal at intense external influence. Computer Research and Modeling, 2019, vol. 11, no. 1, pp. 109–117. doi: 10.20537/2076-7633-2019-11-1-109-117.
  19. Frommen C., Rösner H. Observation of long-period superstructures in chemically synthesised CoPt nanoparticles. Materials Letters, 2004, vol. 58, no. 1-2, pp. 123–127. doi: 10.1016/S0167-577X(03)00428-2.
  20. Khalikov A.R., Iskandarov A.M. Modeling of the Ordering Kinetics of a Binary Alloy via a Vacancy Diffusion Mechanism in the Solid Sphere Model. Russian Physics Journal, 2013, vol. 55, no. 12, pp. 1470–1477 doi: 10.1007/s11182-013-9980-0.
  21. Zakharov P.V., Korznikova E.A., Dmitriev S.V., Ekomasov E.G., Zhou K., Surface discrete breathers in Pt3Al intermetallic alloy. Surface Science, 2019, vol. 679, pp. 1–5. doi: 10.1016/j.susc.2018.08.011.
  22. Zakharov P.V., Starostenkov M.D., Korznikova E.A., Eremin A.M., Lutsenko I.S., Dmitriev S.V. Excitation of Soliton-Type Waves in Crystals of the A3B Stoichiometry. Physics of the Solid State, 2019, vol. 61, no. 11, pp. 2160–2166. doi: 10.1134/S1063783419110416.
  23. Khalikov A.R., Starostenkov M.D., Korznikova E.A., Sharapov E.A., Dmitriev S.V. Structure, energy of planar superstructure defects in X2YZ Heusler alloys. Intermetallics, 2021, vol. 137, article number 107276. doi: 10.1016/j.intermet.2021.107276.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c)



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies