Structural-phase transformations in the Zn–Li–Mg alloy exposed to the high pressure torsion

Cover Page

Cite item

Full Text

Abstract

In this paper, using the X-ray scattering method, the authors found the similaritues and differences in the structural-phase transformations in a Zn–Li–Mg alloy under the artificial and dynamic aging. The artificial aging (AA) of the alloy was implemented at a temperature of 300 ºС for 24 h, while the dynamic aging (DA) was performed through high-pressure torsion at room temperature for a few minutes. For the first time, using X-ray phase analysis, the authors identified the type and parameters of the LiZn2 phase crystal lattice (Pmmm, a=0.48635 nm, b=1.11021 nm, c=0.43719 nm, α=β=γ=90º) and the β-LiZn4 phase (P63/mmc, a=b=0.279868 nm, c=0.438598 nm, α=β=90º, γ=120º) to the eutectics in specified conditions. The study found that SPD leads to intensive precipitation of Zn particles in the primary β-LiZn4 phase, and β-LiZn4 particles precipitation in the Zn eutectics phase. While analyzing the diffraction patterns, the authors estimated the lattice parameter, the size distribution of coherent scattering regions, the averaged dislocation density, and the fraction of edge and screw dislocations after AA and DA. For the first time, by small-angle X-ray scattering, the authors identified the quantitative characteristics of the size, shape, and nature of the bimodal precipitate distribution in the above-mentioned conditions. In particular, it was found that fine Zn precipitates in the form of needles of 8 nm in diameter and up to 27 nm in length and coarse Zn precipitates in the form of rods of 460 nm in diameter and up to 1000 nm in length are produced in the alloy after AA. In the case of DA, fine Zn precipitates of a primarily spherical shape with an average diameter of 20 nm and coarse Zn precipitates, which formed in the primary β-LiZn4 phase a network with a cell diameter of 200–300 nm and wall thickness of 62 nm are produced in the Zn–Li–Mg alloy.

About the authors

Vil D. Sitdikov

Ufa State Aviation Technical University, Ufa

Email: svil@ugatu.su
ORCID iD: 0000-0002-9948-1099

Doctor of Sciences (Physics and Mathematics), senior researcher of the Science Research Institute of Physics of Advanced Materials

Russian Federation

Olga B. Kulyasova

Ufa State Aviation Technical University, Ufa;
Bashkir State University, Ufa

Author for correspondence.
Email: elokbox@mail.ru
ORCID iD: 0000-0002-1761-336X

PhD (Engineering), assistant professor of Chair of Materials Science and Physics of Metals, senior researcher of the Laboratory of Multifunctional Materials

Russian Federation

Gulnaz F. Sitdikova

Ufa State Aviation Technical University, Ufa

Email: gsitdikova77@mail.ru

engineer of Chair of Materials Science and Physics of Metals

Russian Federation

Rinat K. Islamgaliev

Ufa State Aviation Technical University, Ufa

Email: rinatis@mail.ru
ORCID iD: 0000-0002-6234-7363

Doctor of Sciences (Physics and Mathematics), Professor of Chair of Materials Science and Physics of Metals

Russian Federation

Zheng Yufeng

Peking University, Peking

Email: yfzheng@pku.edu.cn
ORCID iD: 0000-0002-7402-9979

Professor of the Department of Materials Science and Engineering

China

References

  1. Salahshoor M., Guo Y. Biodegradable Orthopedic Magnesium Calcium Alloys, Processing, and Corrosion Performance. Materials, 2012, vol. 5, no. 1, pp. 135–155. doi: 10.3390/ma5010135.
  2. Staiger М.Р., Pietak A.M., Huadmai J., Dias G. Magnesium and its alloys as orthopedic biomaterials: A review. Biomaterials, 2006, vol. 27, no. 9, pp. 1728–1734. doi: 10.1016/j.biomaterials.2005.10.003.
  3. Bowen P.K., Drelich J., Goldman J. Zinc exhibits ideal physiological corrosion behavior for bioabsorbable stents. Advanced Materials, 2013, vol. 25, no. 18, pp. 2577–2582. doi: 10.1002/adma.201300226.
  4. Jia B., Yang H., Han Yu., Zhang Z., Qu X., Zhuang Y., Wu Q., Zheng Yu., Dai K. In vitro and in vivo studies of Zn-Mn biodegradable metals designed for orthopedic applications. Acta Biomaterialia, 2020, vol. 108, pp. 358–372. doi: 10.1016/j.actbio.2020.03.009.
  5. Li G., Yang H., Zheng Yu., Chen X.-H., Yang J.-A., Zhu D., Ruan L., Takashima K. Challenges in the use of zinc and its alloys as biodegradable metals: Perspective from biomechanical compatibility. Acta Biomaterialia, 2019, vol. 97, pp. 23–45. doi: 10.1016/j.actbio.2019.07.038.
  6. Yang H., Jia B., Zhang Z., Qu X., Li G., Lin W., Zhu D., Dai K., Zheng Yu. Alloying design of biodegradable zinc as promising bone implants for load-bearing applications. Nature Communications, 2020, vol. 11, no. 1, article number 401. doi: 10.1038/s41467-019-14153-7.
  7. Li H.F., Xie X.H., Zheng Yu.F., Cong Y., Zhou F.Y., Qiu K.J., Wang X., Chen S.H., Huang L., Tian L., Qin L. Development of biodegradable Zn-1X binary alloys with nutrient alloying elements Mg, Ca and Sr. Scientific Reports, 2015, vol. 5, article number 10719. doi: 10.1038/srep10719.
  8. Guo H., He Y., Zheng Yu., Cui Y. In vitro studies of biodegradable Zn-0.1Li alloy for potential esophageal stent application. Materials Letters, 2020, vol. 275, article number 128190. doi: 10.1016/j.matlet.2020.128190.
  9. Li Zh., Shi Zh.-Zh., Hao Y., Li H.-F., Liu X.-F., Volinsky A.A., Zhang H.-J., Wang L.-N. High-performance hot-warm rolled Zn-0.8Li alloy with nano-sized metastable precipitates and sub-micron grains for biodegradable stents. Journal of Materials Science and Technology, 2019, vol. 35, no. 11, pp. 2618–2624. doi: 10.1016/j.jmst.2019.06.009.
  10. Li Zh., Shi Z., Zhang H., Li H., Feng Y., Wang L. Hierarchical microstructure and two-stage corrosion behavior of a high-performance near-eutectic Zn-Li alloy. Journal of Materials Science and Technology, 2021, vol. 80, pp. 50–65. doi: 10.1016/j.jmst.2020.10.076.
  11. Li Zh., Shi Zh.-Zh., Hao Y., Li H., Zhang H., Liu X., Wang L.-N. Insight into role and mechanism of Li on the key aspects of biodegradable Zn-Li alloys: Microstructure evolution, mechanical properties, corrosion behavior and cytotoxicity. Materials Science and Engineering C, 2020, vol. 114, article number 111049. doi: 10.1016/j.msec.2020.111049.
  12. Mizelli-Ojdanic A., Horky J., Mingler B., Fanetti M., Gardonio S., Valant M., Sulkowski B., Schafler E., Orlov D., Zehetbauer M. Enhancing the mechanical properties of biodegradable Mg alloys processed by warm HPT and thermal treatments. Materials, 2021, vol. 14, no. 21, article number 6399. doi: 10.3390/ma14216399.
  13. Kulyasova O.B., Islamgaliev R.K., Zhao Y., Valiev R.Z. Enhancement of the mechanical properties of an Mg-Zn-Ca alloy using high-pressure torsion. Advanced Engineering Materials, 2015, vol. 17, no. 12, pp. 1738–1741. doi: 10.1002/adem.201500176.
  14. Murashkin M., Medvedev A., Kazykhanov V., Krokhin A., Raab G., Enikeev N., Valiev R.Z. Enhanced mechanical properties and electrical conductivity in ultrafine-grained Al 6101 alloy processed via ECAP-conform. Metals, 2015, vol. 5, no. 4, pp. 2148–2164. doi: 10.3390/met5042148.
  15. Zhang Y., Jin Sh., Trimby P., Liao X., Murashkin M.Y., Valiev R.Z., Sha G. Strengthening mechanisms in an ultrafine-grained Al-Zn-Mg-Cu alloy processed by high pressure torsion at different temperatures. Materials Science and Engineering A, 2019, vol. 752, pp. 223–232. doi: 10.1016/j.msea.2019.02.094.
  16. Leoni M., Confente T., Scardi P. PM2K: A flexible program implementing Whole Powder Pattern Modelling. Zeitschrift für Kristallographie, Supplement, 2006, vol. 1, no. 23, pp. 249–254. doi: 10.1524/zksu.2006.suppl_23.249.
  17. Ungár T., Dragomir I., Révész Á., Borbély A. The contrast factors of dislocations in cubic crystals: The dislocation model of strain anisotropy in practice. Journal of Applied Crystallography, 1999, vol. 32, no. 5, pp. 992–1002. doi: 10.1107/S0021889899009334.
  18. Integrated X-Ray Powder Diffraction Software PDXL. Rigaku Journal, 2010, vol. 26, no. 1, pp. 23–27.
  19. Rietveld H.M. A profile refinement method for nuclear and magnetic structures. Journal of Applied Crystallography, 1969, vol. 2, no. 2, pp. 65–71. doi: 10.1107/S0021889869006558.
  20. Snellings R., Machiels L., Mertens G., Elsen J. Rietveld refinement strategy for quantitative phase analysis of partially amorphous zeolitized tuffaceous rocks. Geologica Belgica, 2010, vol. 13, no. 3, pp. 183–196.
  21. Jette E.R., Foote F. Precision determination of lattice constants. Journal of Chemical Physics, 1935, vol. 3, no. 10, pp. 605–616. doi: 10.1063/1.1749562.
  22. Zehetbauer M.J., Stüwe H.P., Vorhauer A., Schafler E., Kohout J. The role of hydrostatic pressure in severe plastic deformation. Advanced Engineering Materials, 2003, vol. 5, no. 5, pp. 330–337. doi: 10.1002/adem.200310090.
  23. Valiev R.Z., Aleksandrov I.V. Obyemnye nanostrukturnye metallicheskie materialy: poluchenie, struktura i svoystva [Bulk nanostructured metallic materials: preparation, structure and properties]. Moscow, Akademkniga Publ., 2007. 397 p.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c)



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies