Finite-element simulation of fatigue behavior of a medical implant produced from titanium in the large-grained and nanostructured states

Cover Page

Cite item

Full Text

Abstract

Nowadays, to improve the quality of life, dental implantation is widely used, and ensuring proper functioning and durability of the implantable devices is one of the most crucial tasks for modern-day dentistry. The development of new biomaterials with improved properties, such as nanostructured materials, widens the possibilities of medical goods miniaturization to create new-generation implants. Computer simulation plays a large part when designing these devices, which allows effectively specifying an implant design depending on the materials used and operation conditions. This paper presents the results of modeling using the finite-element method for the comparative analysis of an implant’s deformed behavior within the cyclic load conditions. The authors considered large-grained commercially pure titanium and nanostructured titanium with improved properties as implant material. The authors analyzed various arrangements of an implanted device according to the fatigue testing conditions – considering and not considering the influence of an abutment and the base reaction. The study identified the implant’s characteristics, such as fatigue endurance and safety factor for a specific type of arrangement and material type, as well as the equivalent stress distribution, including taking into account a sign. The research shows that the most realistic results can be achieved when modeling a device in the “abutment – implant – base” arrangement. The study demonstrates that strength characteristics crucial for product destruction are described by the maximum principal stresses, and the studied implant configuration ensures its longstanding proper functioning in the case of its production exceptionally from nanostructured titanium with enhanced properties.

About the authors

Aleksey V. Kapustin

Ufa State Aviation Technical University, Ufa

Author for correspondence.
Email: kapustin129@yandex.ru

postgraduate student of Chair of Materials Science and Physics of Metals

Russian Federation

Nariman A. Enikeev

Ufa State Aviation Technical University, Ufa;
Bashkir State University, Ufa

Email: nariman.enikeev@ugatu.su
ORCID iD: 0000-0002-7503-8949

Doctor of Sciences (Physics and Mathematics), senior researcher of laboratory “Metals and Alloys under the Extreme Conditions”, professor of Chair of Materials Science and Physics of Metals

Russian Federation

References

  1. Edalati K., Bachmaier A., Beloshenko V.A., Beygelzimer Ya., Blank V.D., Botta W.J., Bryla K., Cizek J., Divinski S., Enikeev N.A., Estrin Yu., Faraji G., Figueiredo R.B., Fuji M., Furuta T., Grosdidier T., Gubicza J., Hohenwarter A., Horita Z., Huot J., Ikoma Y., Janecek M., Kawasaki M., Kral P., Kuramoto S., Langdon T.G., Leiva D.R., Levitas V.I., Mazilkin A., Mito M., Miyamoto H., Nishizaki T., Pippan R., Popov V.V., Popova E.N., Purcek G., Renk O., Revesz A., Sauvage X., Sklenicka V., Skrotzki W., Straumal B.B., Suwas S., Toth L.S., Tsuji N., Valiev R.Z., Wilde G., Zehetbauer M.J., Zhu X. Nanomaterials by severe plastic deformation: review of historical developments and recent advances. Materials Research Letters, 2022, vol. 10, no. 4, pp. 163–256. doi: 10.1080/21663831.2022.2029779.
  2. Polyakov A.V., Dluhoš L., Dyakonov G.S., Raab G.I., Valiev R.Z. Recent Advances in Processing and Application of Nanostructured Titanium for Dental Implants. Advanced Engineering Materials, 2015, vol. 17, no. 12, pp. 1869–1875. doi: 10.1002/adem.201500212.
  3. Bindu S., Sanosh K., Smetana K., Balakrishnan A., Kim T.N. An in vivo evaluation of ultra-fine grained titanium implants. Journal of Materials Science and Technology, 2009, vol. 25, no. 4, pp. 556–560.
  4. An B., Li Z., Diao X., Xin H., Zhang Q., Jia X., Wu Y., Li K., Guo Y. In vitro and in vivo studies of ultrafine-grain Ti as dental implant material processed by ECAP. Materials Science and Engineering C, 2016, vol. 67, pp. 34–41. doi: 10.1016/j.msec.2016.04.105.
  5. Valiev R.Z., Prokofiev E.A., Kazarinov N.A., Raab G.I., Minasov T.B. Stráský J. Developing Nanostructured Ti Alloys for Innovative Implantable Medical Devices. Materials, 2020, vol. 13, no. 4, pp. 967–981. doi: 10.3390/mal13040967.
  6. Van Staden R.C., Guan H., Loo Y.C. Application of the finite element method in dental implant research. Computer Methods in Biomechanics and Biomedical Engineering, 2006, vol. 9, no. 4, pp. 257–270. doi: 10.1080/10255840600837074.
  7. Rezende C.E.E., Chase-Diaz M., Costa M.D., Albarracin M.L., Paschoeto G., Sousa E.A.C., Rubo J.H., Borges A.F.S. Stress distribution in single dental implant system: three-dimensional finite element analysis based on an in vitro experimental model. Journal of Craniofacial Surgery, 2015, vol. 26, no. 7, pp. 2196–2200. doi: 10.1097/SCS.0000000000001977.
  8. Borie E., Orsi I.A., Noritomi P.Y., Kemmoku D.T. Three-dimensional finite element analysis of the biomechanical behaviors of implants with different connections, lengths, and diameters placed in the maxillary anterior region. International Journal of Oral and Maxillofacial Implants, 2016, vol. 31, no. 1, pp. 101–110. doi: 10.11607/jomi.4120.
  9. Huang C.-C., Li M.-J., Tsai P.-I., Kung P.-C., Chen S.-Y., Sun J.-S., Tsou N.-T. Novel design of additive manufactured hollow porous implants. Dental Materials, 2020, vol. 36, no. 11, pp. 1437–1451. doi: 10.1016/j.dental.2020.08.011.
  10. Akça K., Çehreli M.C., Iplikçioǧlu H. Evaluation of the mechanical characteristics of the implant-abutment complex of a reduced-diameter morse-taper implant: A nonlinear finite element stress analysis. Clinical Oral Implants Research, 2003, vol. 14, no. 4, pp. 444–454. doi: 10.1034/j.1600-0501.2003.00828.x.
  11. Kul E., Korkmaz I.H. Effect of different design of abutment and implant on stress distribution in 2 implants and peripheral bone: A finite element analysis study. Journal of Prosthetic Dentistry, 2021, vol. 126, no. 5, pp. 664.e1–664.e9. doi: 10.1016/j.prosdent.2020.09.058.
  12. Darwich A., Alammar A., Heshmeh O., Szabolcs S., Nazha H. Fatigue loading effect in custom-made all-on-4 implants system: A 3D finite elements analysis. IRBM, 2021. doi: 10.1016/j.irbm.2021.06.008.
  13. Kayabaşi O., Yüzbasıoǧlu E., Erzincanli F. Static, dynamic and fatigue behaviors of dental implant using finite element method. Advances in Engineering Software, 2006, vol. 37, no. 10, pp. 649–658. doi: 10.1016/j.advengsoft.2006.02.004.
  14. Valiev R.Z., Parfenov E.V., Parfenova L.V. Developing nanostructured metals for manufacturing of medical implants with improved design and biofunctionality. Materials Transactions, 2019, vol. 60, no. 7, pp. 1356–1366. doi: 10.2320/matertrans.MF201943.
  15. Fintová S., Dlhý P., Mertová K., Chlup Z., Duchek M., Procházka R., Hutař P. Fatigue properties of UFG Ti grade 2 dental implant vs. conventionally tested smooth specimens. Journal of the Mechanical Behavior of Biomedical Materials, 2021, vol. 123, article number 104715. doi: 10.1016/j.jmbbm.2021.104715.
  16. Ayllón J.M., Navarro C., Vázquez J., Domínguez J. Fatigue life estimation in dental implants. Engineering Fracture Mechanics, 2014, vol. 123, pp. 34–43. doi: 10.1016/j.engfracmech.2014.03.011.
  17. Duan Y., Gonzalez J.A., Kulkarni P.A., Nagy W.W., Griggs J.A. Fatigue lifetime prediction of a reduced-diameter dental implant system: Numerical and experimental study. Dental Materials, 2018, vol. 34, no. 9, pp. 1299–1309. doi: 10.1016/j.dental.2018.06.002.
  18. Çallıoğlu Ş., Acar P. Design of β-Titanium microstructures for implant materials. Materials Science and Engineering C, 2020, vol. 110, article number 110715. doi: 10.1016/j.msec.2020.110715.
  19. Segurado J., Llorca J. Simulation of the deformation of polycrystalline nanostructured Ti by computational homogenization. Computation Materials Science. 2013, vol. 76, pp. 3–11. doi: 10.1016/j.commatsci.2013.03.008.
  20. Mishnaevsky L., Levashov E., Valiev R.Z., Segurado J., Sabirov I., Enikeev N., Prokoshkin S., Solov’yov A.V., Korotitskiy A., Gutmanas E., Gotman I., Rabkin E., Psakj’E S., Dluhos L., Seefeldt M., Smolin A. Nanostructured titanium-based materials for medical implants: Modeling and development. Materials Science and Engineering R: Reports, 2014, vol. 81, no. 1, pp. 1–19. doi: 10.1016/j.mser.2014.04.002.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c)



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies