Simulation of mechanical and physical properties of a carbon nanotubes bundle under the transverse compression using a chain model with the reduced number of degrees of freedom

Cover Page

Cite item

Full Text

Abstract

The paper studies a bundle of oriented carbon nanotubes (CNTs) under the transverse loading under the plane deformation conditions within the framework of a molecular dynamics model with a reduced number of degrees of freedom. The model takes into account CNT wall stretching and bending, as well as van der Waals interactions. Each CNT is represented by a ring of atoms with two degrees of freedom in the plane of the ring. The discrete nature of the model allows describing the large curvature of the CNT wall and the destruction of CNTs at very high pressure. CNT crystal equilibrium structures are obtained under the strain-controlled biaxial loading. Separate CNTs of a sufficiently large diameter have two equilibrium states: with a round and collapsed cross section. Small-diameter CNTs in the free state can only have a circular cross section. The study identified the presence of two phase transitions observed during biaxial compression of a CNT bundle. The first transformation similar to phase transition of the second order leads to ellipticization of CNT cross sections. As a result of the second transition of the first order, bundled CNTs appear in the beam, the proportion of which gradually increases with the increase in compressive strain. The authors calculated beam elasticity constants such as Young’s moduli, shear modulus, and Poisson’s ratios. The study shows that one of the equilibrium structures (with elliptical CNT cross sections) has the property of a partial auxetic, that is, it has a negative Poisson’s ratio under uniaxial loading in a certain direction. The proposed chain model can be effectively applied to analyze physical and mechanical properties of bundles of single-walled or multi-walled CNTs under the plane deformation conditions, and after simple modifications, it can be used to similar structures made of other two-dimensional nanomaterials.

About the authors

Dina U. Abdullina

Ufa State Aviation Technical University, Ufa

Author for correspondence.
Email: dina.abdullina25@gmail.com
ORCID iD: 0000-0001-6196-6093

Master of Chair of Materials Science and Physics of Metals

Россия

Leysan Kh. Galiakhmetova

Institute for Metals Superplasticity Problems of the RAS, Ufa

Email: lesya813rys@gmail.com
ORCID iD: 0000-0001-6010-6921

PhD (Physics and Mathematics), Researcher

Россия

Yuri V. Bebikhov

Mirny Polytechnic Institute (branch) of North-Eastern Federal University, Mirny

Email: bebikhov.yura@mail.ru
ORCID iD: 0000-0002-8366-4819

PhD (Physics and Mathematics), Associate Professor

Россия

References

  1. Yu M.-F. Fundamental mechanical properties of carbon nanotubes: Current understanding and the related experimental studies. Journal of Engineering Materials and Technology, 2004, vol. 126, no. 3, pp. 271–278. doi: 10.1115/1.1755245.
  2. Bai Y., Zhang R., Ye X., Zhu Zh., Xie H., Shen B., Cai D., Liu B., Zhang Ch., Jia Z., Zhang Sh., Li X., Wei F. Carbon nanotube bundles with tensile strength over 80 GPa. Nature Nanotechnology, 2018, vol. 13, no. 7, pp. 589–595. doi: 10.1038/s41565-018-0141-z.
  3. Di J., Fang S., Moura F.A., Galvão D.S., Bykova J., Aliev A., de. Andrade M.J., Lepró X., Li Na., Haines C., Ovalle-Robles R., Qian D., Baughman R.H. Strong, twist-stable carbon nanotube yarns and muscles by tension annealing at extreme temperatures. Advances Materials, 2016, vol. 28, no. 31, pp. 6598–6605. doi: 10.1002/adma.201600628.
  4. Li Y., Zhang X., Tao X., Xu J., Huang W., Luo J., Luo Z., Li T., Liu F., Bao Y., Geise H.J. Mass Production of High-Quality Multi-Walled Carbon Nanotube Bundles on a Ni/Mo/MgO Catalyst. Carbon, 2005, vol. 43, no. 2, pp. 295–301. doi: 10.1016/j.carbon.2004.09.014.
  5. Rakov E.G. Materials made of carbon nanotubes. The carbon nanotube forest. Russian Chemical Reviews, 2013, vol. 82, no. 6, pp. 538–566. doi: 10.1070/RC2013v082n06ABEH004340.
  6. Karimzad Ghavidel A., Zadshakoyan M., Arjmand M. Mechanical analysis of aligned carbon nanotube bundles under electric field. International Journal of Mechanical Sciences, 2021, vol. 196, article number 106289. doi: 10.1016/J.IJMECSCI.2021.106289.
  7. Korznikova E.A., Shcherbinin S.A., Ryabov D.S., Chechin G.M., Ekomasov E.G., Barani E., Zhou K., Dmitriev S.V. Delocalized Nonlinear Vibrational Modes in Graphene: Second Harmonic Generation and Negative Pressure. Physica Status Solidi (B) Basic Research, 2019, vol. 256, no. 1, article number 1800061. doi: 10.1002/pssb.201800061.
  8. Fitzgerald S.P. Structure and dynamics of crowdion defects in bcc metals. Journal of Micromechanics and Molecular Physics, 2018, vol. 3, no. 3-4, article number 1840003. doi: 10.1142/S2424913018400039.
  9. Chetverikov A.P., Shepelev I.A., Korznikova E.A., Kistanov A.A., Dmitriev S.V., Velarde M.G. Breathing subsonic crowdion in Morse lattices. Computational Condensed Matter, 2017, vol. 13, pp. 59–64. doi: 10.1016/j.cocom.2017.09.004.
  10. Savin A.V., Mazo M.A. Two-Dimensional Model of Scrolled Packings of Molecular Nanoribbons. Physics of the Solid State, 2018, vol. 60, no. 4, pp. 826–835. doi: 10.1134/S1063783418040297.
  11. Dudek K., Attard D., Caruana-Gauci R., Wojciechowski K.W., Grima J.N. Unimode metamaterials exhibiting negative linear compressibility and negative thermal expansion. Smart Materials and Structures, 2016, vol. 25, no. 2, article number 025009. doi: 10.1088/0964-1726/25/2/025009.
  12. Dudek K., Gatt R., Mizzi L., Dudek M., Attard D., Evans K.E., Grima J.N. On the dynamics and control of mechanical properties of hierarchical rotating rigid unit auxetics. Scientific Reports, 2017, vol. 7, article number 46529. doi: 10.1038/srep46529.
  13. Gatt R., Mizzi L., Azzopardi J.I., Azzopardi K.M., Attard D., Casha A., Briffa J., Grima J.N. Hierarchical Auxetic Mechanical Metamaterials. Scientific Reports, 2015, vol. 5, article number 8395. doi: 10.1038/srep08395.
  14. Alderson K.L., Alderson A., Grima J.N., Wojciechowski K.W. Auxetic Materials and Related Systems. Physica Status Solidi (B) Basic Research, 2014, vol. 251, no. 2, pp. 263–266. doi: 10.1002/pssb.201470114.
  15. Goldstein R.V., Gorodtsov V.A., Lisovenko D.S., Volkov M.A. Auxeticity in nano/microtubes produced from orthorhombic crystals. Smart Materials and Structures, 2016, vol. 25, no. 5, article number 054006. doi: 10.1088/0964-1726/25/5/054006.
  16. Zhang J., Jiang D., Scarpa F., Peng H.-X. Enhancement of pullout energy in a single-walled carbon nanotube-polyethylene composite system via auxetic effect. Composites Part A: Applied Science and Manufacturing, 2013, vol. 55, pp. 188–194. doi: 10.1016/j.compositesa.2013.09.006.
  17. Korznikova E.A., Rysaeva L.Kh., Savin A.V., Soboleva E.G., Ekomasov E.G., Ilgamov M.A., Dmitriev S.V. Chain Model for Carbon Nanotube Bundle under Plane Strain Conditions. Materials, 2019, vol. 12, no. 23, article number 3951. doi: 10.3390/ma12233951.
  18. Rysaeva L.K., Korznikova E.A., Murzaev R.T., Abdullina D.U., Kudreyko A.A., Baimova J.A., Lisovenko D.S., Dmitriev S.V. Elastic damper based on the carbon nanotube bundle. Facta Universitatis, Series: Mechanical Engineering, 2020, vol. 18, no. 1, pp. 1–12. doi: 10.22190/FUME200128011R.
  19. Abdullina D.U., Korznikova E.A., Dubinko V.I., Laptev D.V., Kudreyko A.A., Soboleva E.G., Dmitriev S.V., Zhou K. Mechanical Response of Carbon Nanotube Bundle to Lateral Compression. Computation, 2020, vol. 8, no. 2, article number 27. doi: 10.3390/computation8020027.
  20. Vasiliev A.A., Dmitriev S.V., Ishibashi Y., Shigenari T. Elastic properties of a two-dimensional model of crystals containing particles with rotational degrees of freedom. Physical Review B - Condensed Matter and Materials Physics, 2002, vol. 65, no. 9, pp. 1–7. doi: 10.1103/PhysRevB.65.094101.
  21. Grima J.N., Alderson A., Evans K.E. Auxetic behaviour from rotating rigid units. Physica Status Solidi (B) Basic Research, 2005, vol. 242, no. 3, pp. 561–575. doi: 10.1002/pssb.200460376.
  22. Tanaka H., Suga K., Iwata N., Shibutani Y. Orthotropic Laminated Open-cell Frameworks Retaining Strong Auxeticity under Large Uniaxial Loading. Scientific Reports, 2017, vol. 7, article number 39816. doi: 10.1038/srep39816.
  23. Harkati E.H., Bezazi A., Boukharouba W., Scarpa F. Influence of carbon fibre on the through-the-thickness NPR behaviour of composite laminates. Physica Status Solidi (B) Basic Research, 2009, vol. 246, no. 9, pp. 2111–2117. doi: 10.1002/pssb.200982043.
  24. Li B., Li S., Shi K., Zhang X., Yang S., Pan D., Liu L., Nan Y., Zhu X., Song X., Su L., Yang G., Structural properties of single-walled carbon nanotubes under extreme dynamic pressures. Acta Materialia, 2022, vol. 228, article number 117776. doi: 10.1016/j.actamat.2022.117776.
  25. Wittmaack B.K., Volkov A.N., Zhigilei L.V. Phase transformation as the mechanism of mechanical deformation of vertically aligned carbon nanotube arrays: Insights from mesoscopic modeling. Carbon, 2019, vol. 143, pp. 587–597. doi: 10.1016/j.carbon.2018.11.066.
  26. Ferreira R.S., Aguiar A.L., Alencar R.S., San-Miguel A., Filho A.G.S. Flat-to-Flat Polymerization of Single-Walled Carbon Nanotubes under High Pressure Mediated by Carbon Chain Encapsulation. Journal of Physical Chemistry C, 2021, vol. 125, no. 23, pp. 12857–12869. doi: 10.1021/acs.jpcc.1c02044.
  27. Li B., Li S., Shi K., Zhang X., Yang S., Pan D., Liu L., Nan Y., Zhu X., Song X., Su L., Yang G. Structural properties of single-walled carbon nanotubes under extreme dynamic pressures. Acta Materialia, 2022, vol. 228, article number 117776. doi: 10.1016/j.actamat.2022.117776.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c)



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies