THERMOELASTIC MARTENSITE TRANSFORMATIONS IN SINGLE-CRYSTALS OF Fe–Ni–Co–Al–Nb(B) FERRUM-BASED ALLOYS AT THE LONG TIME OF AGENING


Cite item

Full Text

Abstract

The authors studied the development of thermoelastic martensite transformation from FCC-γ of high-temperature phase to OCT-α¢ martensite after the aging at 973 K during 20 hours on the single-crystals of Fe – 28 % Ni – 17 % Co – 11.5 % Al – 2.5 % Nb (Nb) and Fe – 28 % Ni – 17 % Co – 11.5 % Al – 2.5 % Nb – 0.05 % B (NbB) (at. %) alloys oriented for the extension along [001]-direction.  It is shown that boron causes: the retardation of the aging processes: in NbB-crystals, the particles of γ¢-phase have the size of 12–14 nm and in Nb-crystals – 18–25 nm; the decrease of Ms onset temperature of the martensite transformation: Ms=108 K in NbB-crystals and Ms=116 K in Nb-crystals; the increase of the stress level at the temperature Ms: at Ms temperature, the stresses are equal to 70 MPa in NbB-crystals and 31 MPa in Nb-crystals. The level of stresses of high-temperature phase is determined by the size of γ¢-phase particles: in Nb-crystals with bigger size of γ¢-phase particles, the high-temperature stresses are higher than in NbB-crystals where γ¢-phase particles have the smaller size.  

When developing thermoelastic γ–α¢ martensite transformation under the load, in Nb- and NbB-crystals after the aging during twenty hours at 973 K, the form memory effect of 2.6 % and 2.2 % respectively was observed, and the superelasticity was not observed. It is shown that the physical reason for the superelasticity absence in Nb-crystals is caused by the brittle β-phase that results into the crystals destruction at the beginning of γ–α¢-MT under the load and in NbB-crystals – by the increase of mechanical hysteresis.     

About the authors

Marina Yurievna Panchenko

National Research Tomsk State University, Tomsk

Author for correspondence.
Email: panchenko.marina4@gmail.com

student

Russian Federation

Olga Anatolievna Kuts

National Research Tomsk State University, Tomsk

Email: bolga@sibmail.com

postgraduate student

Russian Federation

Irina Vasilievna Kireeva

National Research Tomsk State University, Tomsk

Email: kireeva@spti.tsu.ru

Doctor of Sciences (Physics and Mathematics), chief researcher

Russian Federation

Yuriy Ivanovich Chumlyakov

National Research Tomsk State University, Tomsk

Email: chum@phys.tsu.ru

Doctor of Sciences (Physics and Mathematics), Professor

Russian Federation

References

  1. Tanaka Y., Himuro Y., Kainuma R. Ferrous polycrystalline shape memory alloy showing huge superelasticity. Science, 2010, vol. 327, no. 3, pp. 1488–1490.
  2. Kokorin V.V. Martensitnye prevrashcheniya v neodnorodnykh tverdykh rastvorakh [Martensite transformations in nonhomogeneous solid solutions]. Kiev, Naukova Dumka Publ., 1987. 168 p.
  3. Kokorin V.V., Grun’ko L.P. Tetragonality of martensite grate and parameters of γ–α' transformation in FeNiCoTi alloys. Metallofizika i noveishie tekhnologii, 1995, vol. 17, no. 11, pp. 30–35.
  4. Chumlyakov Y.I., Kireeva I.V., Kuts O.A., Kuksgauzen D.A. Thermoelastic martensitic transformations and superelasticity in the [001]-oriented FeNiCoAlNb single crystals. Russian Physics Journal, 2014, vol. 57, no. 10, pp. 28–35.
  5. Chumlyakov Y.I., Kireeva I.V., Kuts O.A., Panchenko M.Y., Karaka E., Maier H.J. Shape memary effect and superelasticity in [001] single crystals of Fe–Ni–Co–Al–Nb(B) ferromagnetic alloy. Russian Physics Journal, 2015, vol. 58, no. 7, pp. 889–897.
  6. Omori T., Abe S., Tanaka Y., Lee D.Y., Ishida K., Kainuma R. Thermoelastic martensitic transformation and superelasticity in Fe-Ni-Co-Al-Nb-B polycrystalline alloy. Scripta Materialia, 2013, vol. 69, no. 11-12, pp. 812–815.
  7. Lee D., Omori T., Kainuma R. Ductility enhancement and superelasticity in Fe-Ni-Co-Al-Ti-B polycrystalline alloy. Journal of Alloys and Compounds, 2014, vol. 617, pp. 120–123.
  8. Geng Y., Lee D., Xu X., Nagasako M., Jin M., Jin X. Coherency of ordered γ' precipitates and thermoelastic martensitic transformation on FeNiCoAlTaB alloys. Journal of Alloys and Compounds, 2015, vol. 628, pp. 287–292.
  9. Otsuka K., Wayman C.M. Shape Memory Materials. UK, Cambridge University Press, 1998. 284 p.
  10. Otsuka K., Ren X. Physical metallurgy of Ti-Ni-based shape memory alloys. Progress in Materials Science, 2005, vol. 50, no. 5, pp. 511–678.
  11. Olson G.B., Owen W.S., eds. Martensite: a tribute to Morris Cohen. Ohio, ASM International, 1992. 331 p.
  12. Kurdyumov G.V., Utevsky L.M., Entin R.I. Prevrashcheniya v zheleze i stali [Transformations in ferrum and steel]. Moscow, Nauka Publ., 1977. 238 p.
  13. Tanaka Y., Kainuma R., Omori T., Ishida K. Alloy design for Fe-Ni-Co-Al based superelastic alloys. Materials Today: Proceedings, 2015, vol. 2S, pp. S485–S492.
  14. Sehitoglu H., Zhang X.Y., Kotil Т., Canadinc D., Chumlyakov Y., Maier H.J. Shape memory behavior of FeNiCoTi single and polycrystals. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2002, vol. 33, no. 12, pp. 3661–3672.
  15. Berner R., Kronmyuller G. Plasticheskaya deformatsiya monokristallov [Plastic deformation of single-crystals]. Moscow, Mir Publ., 1969. 272 p.
  16. Chumlyakov Yu.I., Kireeva I.V., Korotaev A.D., Litvinova E.I., Zuev Yu.L. Mechanisms of plastic deformation, hardening, and fracture in single crystals of nitrogen-containing austenitic stainless steels. Russian Physics Journal, 1996, vol. 39, no. 3, pp. 189–210.
  17. Nembach E. Particle strengthening of metals and alloys. USA, John Wiley & Sons, 1997. 285 p.
  18. Ashby M.F. Deformation of plastically non-homogeneous materials. Phil Mag, 1970, vol. 21, no. 170, pp. 399–424.
  19. Vladimirov V.I. Fizicheskaya priroda razrusheniya metallov [Physical nature of metals destruction]. Moscow, Metallurgiya Publ., 1984. 280 p.
  20. Liu Y., Galvin S.P. Criteria for pseudoelasticity in near-eqaiatomic NiTi shape memory alloys. Acta Materialia, 1997, vol. 45, no. 11, pp. 4431–4439.
  21. Chumlyakov Y.I., Kireeva I.V., Panchenko E.Y., Timofeeva E.E., Kretinina I.V., Kuts O.A. Physics of thermoelastic martensitic transformation in high-strength single crystals. Materials science foundations, 2015, vol. 81-82, pp. 107–173.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c)



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies