Combination of circular motions in machines and mechanisms

Cover Page

Cite item

Full Text

Abstract

In technical systems, including aviation and space technology, and in particular, in aircraft transmissions, bearings, orbital systems, helicopter mechanisms, and many others, the combined rotational movements are widespread, and when designing, it is important to understand the nature of joint motion. The paper aimed at the generalization of the principle of the combination of motions in circular movements. The author considered the x'0'y' coordinate system that rotates in the x0y coordinate system without angular acceleration with the velocity ω. The radius of rotation is equal to ρ1. Wherein 0|| 0'x', 0|| 0'y'. An object a rotates in the x'0'y' coordinate system without angular acceleration with the velocity ±ω. The radius of rotation is equal to ρ2. The study identified that at reverse rotations, the trajectory of joint motion represents an ellipse. The author determined all standard ellipse characteristics relating to the case under the study and identified the elliptical trajectory inclination. The study shows that if the joint motion trajectory is elliptical and the semi-axes are equal (ρ12) and |ρ1−ρ2|, then an object a undergoes circular motion in the x'0'y' coordinate system without angular acceleration with the velocity −ω. Just as the result of the superposition of two non-accelerated straight movements is also non-accelerated, i.e. a uniform and rectilinear movement, at the one-way rotations, the joint motion trajectory represents a circle. At circular motions with multiple speeds, the joint motion trajectory represents a snail. The practical aspect of the study is determined by the fact that the resulting formulas can be directly used in the CAD system when performing design works.

About the authors

Igor P. Popov

Kurgan State University, Kurgan (Russia)

Author for correspondence.
Email: ip.popow@yandex.ru
ORCID iD: 0000-0001-8683-0387

PhD (Engineering), senior lecturer

Россия

References

  1. Bardin B.S., Panev A.S. Translational rectilinear motion of a solid body carrying a movable inner mass. Sovremennaya matematika. Fundamentalnye napravleniya, 2019, vol. 65, no. 4, pp. 557–592. doi: 10.22363/2413-3639-2019-65-4-557-592.
  2. Abramov M.P., Shipitko O.S., Grigorev A.S., Ershov E.I. Vanishing point detection for monocular camera extrinsic calibration under translation movement. Sensornye sistemy, 2020, vol. 34, no. 1, pp. 32–43. doi: 10.31857/S0235009220010023.
  3. Kondakov S.V., Dyakonov A.A., Pavlovskaya O.O., Podzhivotova I.A. Algorithm of follow-up control system work for rectilinear motion stabilization of industrial tractor with differential rotation gear. Vestnik Bryanskogo gosudarstvennogo tekhnicheskogo universiteta, 2019, no. 12, pp. 68–75. doi: 10.30987/1999-8775-2019-2019-12-68-75.
  4. Ushakova O.V. Algorithm of regridding to the area formed by the rotational surfaces with the parallel axes of rotation. Voprosy atomnoy nauki i tekhniki. Seriya: Matematicheskoe modelirovanie fizicheskikh protsessov, 2018, no. 1, pp. 30–41.
  5. Ismagilov F.R., Teregulov T.R., Shapiro S.V. Cascaded synchronous-asynchronous generator with stator counterrotation. Elektrotekhnika, 2017, no. 1, pp. 12–16.
  6. Podbolotov S.V., Kolga A.D. Mathematical and experimental modeling of centrifugal turbomachines’ operating modes with a coaxial arrangement of impellers. Izvestiya Uralskogo gosudarstvennogo gornogo universiteta, 2018, no. 1, pp. 80–84. doi: 10.21440/2307-2091-2018-1-80-84.
  7. Romanova E.B., Kuznetsov R.V. Integration of CAD Altium designer for electronics and MCAD AUTODESK inventor. Izvestiya vysshikh uchebnykh zavedeniy. Priborostroenie, 2017, vol. 60, no. 1, pp. 63–67. doi: 10.17586/0021-3454-2017-60-1-63-67.
  8. Kuznetsov S.A. Development of domestic specialized CAD - the inevitable way to ensure Russia’s technological independence from foreign CAD. Pribory i sistemy. Upravlenie, kontrol, diagnostika, 2017, no. 5, pp. 1–11.
  9. Bibilo P.N., Romanov V.I. CAD integration for logic synthesis using global optimization. Programmnye produkty i sistemy, 2019, no. 1, pp. 26–33. doi: 10.15827/0236-235X.125.026-033.
  10. Bolotnik N.N., Gubko P.A., Figurina T.Y. Possibility of a non-reverse periodic rectilinear motion of a two-body system on a rough plane. Mechanics of Solids, 2018, vol. 53, no. 2, pp. 7–15.
  11. Polyak G.L. Determination of target maneuver by angular information in 2D tracking problem when the observer moves in a straight course. Vestnik Voronezhskogo gosudarstvennogo universiteta. Seriya: Fizika. Matematika, 2019, no. 2, pp. 125–131.
  12. Kirsanov A.P. Stealthy movement of aerial object along rectilinear paths in the onboard doppler radar station detection zone. Vestnik Moskovskogo aviatsionnogo institute, 2019, vol. 26, no. 4, pp. 191–199. doi: 10.34759/vst-2019-4-191-199.
  13. Smirnov K.A., Kurochkin S.Yu. Simulation of rectilinear motion of wheeled robot with electromechanical powertrain. Robototekhnika i tekhnicheskaya kibernetika, 2019, vol. 7, no. 1, pp. 46–52. doi: 10.31776/RTCJ.7106.
  14. Yudin Yu.I. Method for identifying mathematical model of the rectilinear motion of the vessel. Morskie intellektualnye tekhnologii, 2019, no. 4-3, pp. 11–17.
  15. Popov I.P. Modeling three-inert oscillator. Prikladnaya matematika i voprosy upravleniya, 2018, no. 4, pp. 73–79.
  16. Popov I.P. Theory of a Multi-Inert Oscillator. Journal of Machinery Manufacture and Reliability, 2020, vol. 49, no. 8, pp. 667–671. doi: 10.3103/S1052618820080105.
  17. Popov I.P. Reactive and full mechanical power of vibration machines. Vestnik Magnitogorskogo gosudarstvennogo tekhnicheskogo universiteta im. G.I. Nosova, 2019, vol. 17, no. 2, pp. 55–59. doi: 10.18503/1995-2732-2019-17-2-55-59.
  18. Mitin S.G., Bochkarev P.Yu., Shalunov V.V., Razmanov I.A. Determination of sustainable levels of design alternatives selection in the workflow CAP system. Vektor nauki Tolyattinskogo gosudarstvennogo universiteta, 2021, no. 3, pp. 48–56. doi: 10.18323/2073-5073-2021-3-48-56.
  19. Gordeev A.V., Loginov N.Yu. Technical parameters optimization while solving engineering problems. Vektor nauki Tolyattinskogo gosudarstvennogo universiteta, 2015, no. 4, pp. 25–30. doi: 10.18323/2073-5073-2015-4-25-30.
  20. Zibrov P.F. Problem of mathematical modelling of accuracy in technology of mechanical engineering. Vektor nauki Tolyattinskogo gosudarstvennogo universiteta, 2012, no. 1, pp. 57–61.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c)



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies