Estimation of texture parameters for the precision surfaces using the quasioptimal correlation algorithms


Cite item

Full Text

Abstract

The authors considered a new method of texture analysis of machined precision surfaces based on using computer optics and the autocorrelation method of processing the images of micro-relief textures under the study. This method is based on a probabilistic comparative evaluation of the unknown texture of the micro-relief under the investigation with the available textures of reference micro-patterns, in which microrelief parameters are determined. The paper proposes an approach to identify the profile surface roughness of a gas turbine engine (GTE) blade after vibro-contact polishing according to the parameters of correlation surface texture. The authors studied the surface micro-geometry of the blade back and pressure side using the optoelectronic complex based on the calculation of the average amplitude of the variable component of an autocorrelation function resulting from computer processing of a surface video image. The application of the electrooptic method for evaluating the surface texture of compressor and turbine blades allows building the surface roughness fields and more deeply analyzing the technology of final processing of the GTE blade feather profile. The relevance and novelty of the study lie in the promising technique to evaluate the surface quality parameters using the electrooptic method. A special feature of this method is the measurement of surface area roughness, while the stylus methods measure the roughness of the surface profile. An important advantage of the proposed method is its application to measure the roughness parameters of a curved surface by a non-contact method, which is advanced since there are surfaces of parts that do not imply being scratched with a diamond needle.

About the authors

Nikolay V. Nоsоv

Samara State Technical University, Samara (Russia)

Author for correspondence.
Email: nosov.nv@samgtu.ru
ORCID iD: 0000-0001-7714-8896

Doctor of Sciences (Engineering), Professor

Russian Federation

Nikita A. Kоstin

Samara State Technical University, Samara (Russia)

Email: fake@neicon.ru
ORCID iD: 0000-0001-5557-2098

graduate student

Russian Federation

Roman V. Ladyagin

Samara State Technical University, Samara (Russia)

Email: fake@neicon.ru
ORCID iD: 0000-0002-0262-8032

graduate student

Russian Federation

References

  1. Butenko V.I. Nauchnye osnovy funktsionalnoy inzhenerii poverkhnostnogo sloya detaley mashin [Scientific bases of functional engineering of the surface layer of machine parts]. Rostov-on-Don, DGTU Publ., 2017. 480 p.
  2. Egorov S., Kapitanov A., Loktev D. Turbine Blades Profile and Surface Roughness Measurement. Procedia Engineering, 2017, vol. 206, pp. 1476–1481. DOI: https://doi.org/10.1016/j.proeng.2017.10.664.
  3. Han Y., Zuxin W., Yunhai Z., Jia M., Yun X. Surface roughness measurement using laser confocal microscope with boundary area correction. Laser and Optoelectronics Progress, 2020, vol. 57, no. 21, article number 211203. DOI: https://doi.org/10.3788/LOP57.211203.
  4. Medunetskiy V.M., Vasilkov S.D. Assessment methods for workpiece surface microgeometry. Izvestiya vysshikh uchebnykh zavedeniy. Priborostroenie, 2016, vol. 59, no. 3, pp. 231–236.
  5. Andreev Yu.S., Demkovich N.A., Isaev R.M., Tselishchev A.A., Vasilkov S.D. Functional surface microgeometry providing the desired performance of an aircraft vibration sensor. Nauchno-tekhnicheskiy vestnik informatsionnykh tekhnologiy, mekhaniki i optiki, 2016, vol. 16, no. 6, pp. 1103–1110.
  6. Gibadullin I.N., Valetov V.A. Image of the surface profile as a graphic criterion of its roughness. Izvestiya vysshikh uchebnykh zavedeniy. Priborostroenie, 2019, vol. 62, no. 1, pp. 86–92.
  7. Patel D.R., Kiran M.B. Non-contact surface roughness measurement using laser speckle technique. IOP Conference Series: Materials Science and Engineering, 2020, vol. 895, no. 1, article number 012007. DOI: https://doi.org/10.1088/1757-899X/895/1/012007.
  8. Pasker V., Grycz O., Hlavica R., Foretník P., Barcáková I. Automatic selection of binarization method from images with serial numbers on industrial products. METAL 2020 – 29th International Conference on Metallurgy and Materials, Conference Proceedings, 2020, pp. 1357–1361. DOI: https://doi.org/10.37904/metal.2020.3636.
  9. Frischer R., Krejcar O., Selamat A., Kuca K. 3D surface profile diagnosis using digital image processing for laboratory use. Journal of Central South University, 2020, vol. 27, no. 3, pp. 811–823. DOI: https://doi.org/10.1007/s11771-020-4333-y.
  10. Bavrina A.E., Ilyasova N.Yu., Kupriyanov A.V., Khramov A.G. Study of photogrammetric images using matrices probability distribution of brightness. Kompyuternaya optika, 2002, no. 23, pp. 62–65.
  11. Plastinin A.I., Kupriyanov A.V., Ilyasova N.Yu. Development of methods for the formation of color-textural features for the analysis of biomedical images. Kompyuternaya optika, 2007, vol. 31, no. 2, pp. 82–85.
  12. Zakharov A.A., Barinov A.E., Zhiznyakov A.L., Titov V.S. Object detection in images with a structural descriptor based on graphs. Kompyuternaya optika, 2017, vol. 42, no. 2, pp. 283–290.
  13. Abramov A.D., Nikonov A.I., Nosov N.V. Sposob kontrolya sherokhovatosti poverkhnosti izdeliya [Method for controlling the surface roughness of the product], patent RF no. 2413179, 2011.
  14. Krig S. Cоmputer visiоn metrics: Survey, taxоnоmy, and analysis. Berkeley, Apress Media Publ., 2014. 498 p.
  15. Whitehouse D. Metrology of Surfaces. Principles, Industrial Methods, and Devices. Dolgoprudnyi, Dom Intellekt Publ., 2009. 472 p.
  16. Abramov A.D. Application of the optiko-electronic complex and quasioptimum correlation algorithm for the estimationof the roughness of surfaces of details of cars and mechanisms. Pribory i sistemy. Upravlenie, kontrol, diagnostika, 2012, no. 2, pp. 44–49.
  17. Abramov A.D., Nosov N.V., Podsekin I.A. Evaluation of surface roughness by optoelectronic method. Vestnik Samarskogo gosudarstvennogo universiteta. Seriya: Tekhnicheskie nauki, 2005, no. 33, pp. 89–94.
  18. Abramov A.D. Influences of optical faktor on estimate of surface roughess by optico-electronic complex. Vestnik Samarskogo gosudarstvennogo universiteta. Seriya: Tekhnicheskie nauki, 2012, no. 2, pp. 42–52.
  19. Abramov A.D., Nikonov A.I. Analysis and correlation method for eliminating the error of optikal electronic determination of microrelief parameters. Vestnik kompyuternykh i informatsionnykh tekhnologiy, 2016, no. 1, pp. 3–9.
  20. Abramov A.D., Zinkovskiy A.I., Nosov N.V., Nikonov A.I., Rodionov V.A. The estimation of roughness with determinated probability blades on the foundation computer technologies of optico-electronies surface means. Izvestiya Samarskogo nauchnogo tsentra Rossiyskoy akademii nauk, 2011, vol. 13, no. 4-3, pp. 645–651.
  21. Nosov N.V., Abramov A.D., Khaustov V.I. Research of roughness of surface rollers with modified contact on the basis of analysis of the ar autocorrelation functions. Vestnik Samarskogo gosudarstvennogo aerokosmicheskogo universiteta im. Akademika S.P. Koroleva, 2009, no. 3-2, pp. 45–54.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c)



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies