The influence of grain size on hydrogen embrittlement of a multicomponent (FeCrNiMnCo)99N1 alloy

Cover Page

Cite item

Abstract

The problem of hydrogen embrittlement remains relevant in many areas, so the FeCrNiMnCo alloy (Cantor alloy) generates increased interest among researchers as one of the materials least exposed to the negative effect of hydrogen. Nevertheless, the issue of the influence of microstructure parameters on hydrogen embrittlement of the Cantor alloy and multicomponent alloys of the FeCrNiMnCo system in general remains understudied. This work studies the influence of grain size on the susceptibility of a nitrogen-doped high-entropy Cantor alloy to hydrogen embrittlement. For this purpose, states with different grain sizes (43±21, 120±57, and 221±97 μm) were formed in the (FeCrNiMnCo)99N1 alloy, using thermomechanical treatments. It is experimentally found that grain refinement leads to an increase in the strength properties of the alloy under study and promotes an increase in the resistance to the hydrogen embrittlement: in samples with the smallest grain size, the hydrogen-induced decrease in ductility is less than in samples with the largest one. A decrease in grain size causes as well a decrease in the length of the brittle zone detected on the fracture surfaces of samples after tension. This is caused by a decrease in hydrogen diffusion during the hydrogen-charging process and a decrease in the transport of hydrogen atoms with mobile dislocations during plastic deformation due to a decrease in grain size.

About the authors

Darya Yu. Gurtova

Tomsk State University

Author for correspondence.
Email: dasha_gurtova@mail.ru

student

Russian Federation, 634050, Russia, Tomsk, Lenin Prospekt, 36

Marina Yu. Panchenko

Institute of Strength Physics and Materials Science of Siberian Branch of RAS

Email: panchenko.marina4@gmail.com
ORCID iD: 0000-0003-0236-2227

junior researcher of Laboratory of Physics of Hierarchic Structures in Metals and Alloys

Russian Federation, 634055, Russia, Tomsk, Akademichesky Prospekt, 2/4

Evgeny V. Melnikov

Institute of Strength Physics and Materials Science of Siberian Branch of RAS

Email: melnickow.jenya@yandex.ru
ORCID iD: 0000-0001-8238-6055

junior researcher of Laboratory of Physics of Hierarchic Structures in Metals and Alloys

Russian Federation, 634055, Russia, Tomsk, Akademichesky Prospekt, 2/4

Denis O. Astapov

Tomsk State University

Email: denis.0612@mail.ru
ORCID iD: 0000-0002-1277-4180

student

Russian Federation, 634050, Russia, Tomsk, Lenin Prospekt, 36

Elena G. Astafurova

Institute of Strength Physics and Materials Science of Siberian Branch of RAS

Email: elena.g.astafurova@gmail.com
ORCID iD: 0000-0002-1995-4205

Doctor of Sciences (Physics and Mathematics), Head of Laboratory of Physics of Hierarchic Structures in Metals and Alloys

Russian Federation, 634055, Russia, Tomsk, Akademichesky Prospekt, 2/4

References

  1. Feng Zheng, Li Xinfeng, Song Xiaolong, Gu Tang, Zhang Yong. Hydrogen Embrittlement of CoCrFeMnNi High-Entropy Alloy Compared with 304 and IN718 Alloys. Metals, 2022, vol. 12, no. 6, article number 998. doi: 10.3390/met12060998.
  2. Zhao Yakai, Lee Dong-Hyun, Seok Moo-Young, Lee Jung-A, Phaniraj M.P., Suh Jin-Yoo, Ha Heon-Young, Kim Ju-Young, Ramamurty U., Jang Jae-il. Resistance of CoCrFeMnNi high-entropy alloy to gaseous hydrogen embrittlement. Scripta Materialia, 2017, vol. 135, pp. 54–58. doi: 10.1016/j.scriptamat.2017.03.029.
  3. Cantor B., Chang I.T.H., Knight P., Vincent A.J.B. Microstructural development in equiatomic multicomponent alloys. Materials Science and Engineering: A, 2004, vol. 375-377, pp. 213–218. doi: 10.1016/j.msea.2003.10.257.
  4. Cantor B. Multicomponent high-entropy Cantor alloys. Progress in Materials Science, 2021, vol. 120, article number 100754. doi: 10.1016/j.pmatsci.2020.100754.
  5. Bertsch K.M., Nygren K.E., Wang S., Bei H., Nagao A. Hydrogen-enhanced compatibility constraint for intergranular failure in FCC FeNiCoCrMn high-entropy alloy. Corrosion Science, 2021, vol. 184, article number 109407. doi: 10.1016/j.corsci.2021.109407.
  6. Traversier M., Mestre-Rinn P., Peillon N., Rigal E., Boulnat X., Tancret F., Dhers J., Fraczkiewicz A. Nitrogen-induced hardening in an austenitic CrFeMnNi high-entropy alloy (HEA). Materials Science and Engineering: A, 2021, vol. 804, article number 140725. doi: 10.1016/j.msea.2020.140725.
  7. Klimova M., Shaysultanov D., Semenyuk A., Zherebtsov S., Salishchev G., Stepanov N. Effect of nitrogen on mechanical properties of CoCrFeMnNi high entropy alloy at room and cryogenic temperatures. Journal of Alloys and Compounds, 2020, vol. 849, article number 156633. doi: 10.1016/j.jallcom.2020.156633.
  8. Zhang Shidong, Liu Min, Luo Yun, Wang Lianbo, Wang Zemin, Wang Zhanyong, Li Fangjie, Shen Qin, Wang Xiaowei. Immunity of Al0.25CoCrFeNi high-entropy alloy to hydrogen embrittlement. Materials Science and Engineering: A, 2021, vol. 821, article number 141590. doi: 10.1016/j.msea.2021.141590.
  9. Luo Hong, Li Zhiming, Lu Wenjun, Ponge D., Raabe D. Hydrogen embrittlement of an interstitial equimolar high-entropy alloy. Corrosion Science, 2018, vol. 136, pp. 403–408. doi: 10.1016/j.corsci.2018.03.040.
  10. Wu Z., Parish C.M., Bei H. Nano-twin mediated plasticity in carbon-containing FeNiCoCrMn high entropy alloys // Journal of Alloys and Compounds. 2015. Vol. 647. P. 815–822. doi: 10.1016/j.jallcom.2015.05.224.
  11. Wang Zhangwei, Baker I. Interstitial strengthening of a f.c.c. FeNiMnAlCr high entropy alloy. Materials Letters, 2016, vol. 180, pp. 153–156. doi: 10.1016/j.matlet.2016.05.122.
  12. Li Xinfeng, Yin Jing, Zhang Jin, Wang Yanfei, Song Xiaolong, Zhang Yong, Ren Xuechong. Hydrogen embrittlement and failure mechanisms of multi-principal element alloys: A review. Journal of Materials Science & Technology, 2022, vol. 122, pp. 20–32. doi: 10.1016/j.jmst.2022.01.008.
  13. Bhadeshia H.K.D.H. Prevention of hydrogen embrittlement in steels. ISIJ international, 2016, vol. 56, no. 1, pp. 24–36. doi: 10.2355/isijinternational.ISIJINT-2015-430.
  14. Lynch S. Hydrogen embrittlement phenomena and mechanisms. Corrosion reviews, 2012, vol. 30, no. 3-4, pp. 105–123. doi: 10.1515/corrrev-2012-0502.
  15. Panchenko M.Yu., Nifontov A.S., Astafurova E.G. Microstructural effect on hydrogen embrittlement of high nitrogen chromium-manganese steel. Physical mesomechanics, 2022, vol. 25, no. 5, pp. 453–465. doi: 10.55652/1683-805X_2022_25_3_84.
  16. Koyama M., Ichii K., Tsuzaki K., Grain refinement effect on hydrogen embrittlement resistance of an equiatomic CoCrFeMnNi high-entropy alloy. International Journal of Hydrogen Energy, 2019, vol. 44, no. 31, pp. 17163–17167. doi: 10.1016/j.ijhydene.2019.04.280.
  17. Fu Z.H., Yang B.J., Chen M., Gou G.Q., Chen H. Effect of recrystallization annealing treatment on the hydrogen embrittlement behavior of equimolar CoCrFeMnNi high entropy alloy. International Journal of Hydrogen Energy, 2021, vol. 46, no. 9, pp. 6970–6978. doi: 10.1016/j.ijhydene.2020.11.154.
  18. Bai Y., Momotani Y., Chen M.C., Shibata A., Tsuji N. Effect of grain refinement on hydrogen embrittlement behaviors of high-Mn TWIP steel. Materials Science and Engineering: A, 2016, vol. 651, pp. 935–944. doi: 10.1016/j.msea.2015.11.017.
  19. Park C., Kang N., Liu S. Effect of grain size on the resistance to hydrogen embrittlement of API 2W grade 60 steels using in situ slow-strain-rate testing. Corrosion Science, 2017, vol. 128, pp. 33–41. doi: 10.1016/j.corsci.2017.08.032.
  20. Fuchigami H., Minami H., Nagumo M. Effect of grain size on the susceptibility of martensitic steel to hydrogen-related failure. Phil Mag Lett, 2006, vol. 86, pp. 21–29.
  21. Li J., Hallil A., Metsue A., Oudriss A., Bouhattate J., Feaugas X. Antagonist effects of grain boundaries between the trapping process and the fast diffusion path in nickel bicrystals. Scientific Reports, 2021, vol. 11, article number 15533. doi: 10.1038/s41598-021-94107-6.
  22. Owczarek E., Zakroczymski T. Hydrogen transport in a duplex stainless steel. Acta Materialia, 2000, vol. 48, no. 12, pp. 3059–3070. doi: 10.1016/S1359-6454(00)00122-1.
  23. Du Y.A., Ismer L., Rogal J., Hickel T., Neugebauer J., Drautz R. First-principles study on the interaction of H interstitials with grain boundaries in α- and γ-Fe. Physical Review B, 2011, vol. 84, article number 144121. doi: 10.1103/PhysRevB.84.144121.
  24. Oudriss A., Creus J., Bouhattate J., Savall C., Peraudeau B., Feaugas X. The diffusion and trapping of hydrogen along the grain boundaries in polycrystalline nickel. Scripta Materialia, 2012, vol. 66, no. 1, pp. 37–40. doi: 10.1016/j.scriptamat.2011.09.036.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Gurtova D.Y., Panchenko M.Y., Melnikov E.V., Astapov D.O., Astafurova E.G.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies