Concerning the selection of areas with a dominant type of dependence when analyzing production control data

Cover Page

Cite item

Abstract

The formation of representative databases determines the interest in forecasting and managing the quality of metal based on data mining using special software products often based on regression analysis and not always taking into account the statistical nature of an object of study itself. This can lead to misinterpretation of the results or incomplete extracted information reducing the efficiency of statistical processing. Based on the analysis of the production database of the technology for producing 13G1S-U sheet steel, the authors evaluated the possibilities of multiple linear regression for predicting the quality of a steel sheet. The study shows that the type of distribution of the values of control parameters, the distribution nature of which was estimated based on the determination of the skewness and kurtosis coefficients, limits the regression forecast depth. Due to the great deviation of the predicted models from the experimental values in the right tail area of the distribution of the impact strength values, in this work, the authors developed the methods for separating data arrays and proposed criteria to compare the obtained results. To assess the accuracy of the results obtained, arrays with a deliberately asymmetric distribution were selected from the initial sample, against which the statistical characteristics were also compared. Based on the proposed techniques, the authors identified the dominant chemical elements that contribute to the difference in the distribution of the values of acceptance properties existing within the same standard technology. The study shows that the proposed separation method can be used as a variation of cognitive graphics techniques to identify areas with a dependence dominant type based on the correlation of skewness and kurtosis coefficients.

About the authors

Victoria V. Timoshenko

University of Science and Technology MISIS, Moscow

Email: VVTimoshenko@edu.misis.ru
ORCID iD: 0009-0008-7671-0291

postgraduate student

Россия

Ekaterina S. Budanova

University of Science and Technology MISIS, Moscow

Email: EPastukh@edu.misis.ru
ORCID iD: 0009-0003-4055-9298

graduate student

Россия

Davronjon F. Kodirov

University of Science and Technology MISIS, Moscow

Email: DFKodirov@edu.misis.ru
ORCID iD: 0009-0003-5380-5558

postgraduate student

Россия

Elina A. Sokolovskaya

University of Science and Technology MISIS, Moscow

Email: Sokolovskaya@misis.ru
ORCID iD: 0000-0001-9381-9223

PhD (Engineering), Associate Professor, assistant professor of Chair of Materials Science and Strength Physics

Россия

Aleksandr V. Kudrya

University of Science and Technology MISIS, Moscow

Author for correspondence.
Email: AVKudrya@misis.ru
ORCID iD: 0000-0002-0339-2391

Doctor of Sciences (Engineering), Professor, professor of Chair of Materials Science and Strength Physics

Россия

References

  1. Vyboyshchik M.A., Ioffe A.V. Scientific basis of development and the methodology of creation of steels for the production of oilfield casing and tubular goods with the increased strength and corrosion resistance. Vektor nauki Tolyattinskogo gosudarstvennogo universiteta, 2019, no. 1, pp. 13–20. doi: 10.18323/2073-5073-2019-1-13-20.
  2. Vlasov S.A., Genkin A.L., Nikulina I.V., Koynov T.A., Shatalov R.L., Kravtsov S.V. Computer-integrated control of metallurgical complexes using forecasting simulation. IFAC Proceedings Volumes, 2009, vol. 42, no. 4, pp. 1832–1837. doi: 10.3182/20090603-3-ru-2001.0321.
  3. Kudrya A.V., Sokolovskaya E.A., Kodirov D.F., Bosov E.V., Timoshenko V.V. Possibilities of “data mining” of production control in metallurgy for prediction of strength, ductility and toughness of metal products. Deformatsiya i razrushenie materialov, 2023, no. S3, pp. 31–40. EDN: UBYQIQ.
  4. Chaykin A.V. Nauchnye osnovy innovatsionnykh tekhnologiy pechnoy i vnepechnoy obrabotki chugunov i staley dlya otlivok otvetstvennogo naznacheniya [Scientific foundations of innovative technologies for furnace and out-of-furnace processing of cast irons and steels for critical castings]. Sankt Petersburg, Naukoemkie tekhnologii Publ., 2022. 245 p.
  5. Wang G., Ledwoch A., Hasani R.M., Grosu R., Brintrup A. A generative neural network model for the quality prediction of work in progress products. Applied Soft Computing, 2019, vol. 85, article number 105683. doi: 10.1016/j.asoc.2019.105683.
  6. Kudrya A.V., Sokolovskaya E.A., Kodirov D.F., Bosov E.V., Kotishevskiy G.V. On necessity of taking into account statistical nature of the objects using Big Data in metallurgy. CIS Iron and Steel Review, 2022, no. 1, pp. 105–112. doi: 10.17580/cisisr.2022.01.19.
  7. Kudrya A.V., Sokolovskaya E.A., Trachenko V.A., Korotneva K.V. Contribution of the technological heredity into appearance of viscosity nonhomogeneity in constructional steel. Vektor nauki Tolyattinskogo gosudarstvennogo universiteta, 2013, no. 3, pp. 202–204. EDN: SBOZDD.
  8. Zhukov P.I., Glushchenko A.I., Fomin A.V. Prediction model of temperature of cast billet based on its heating retrospection using boosting “random forest” structure. Vestnik Novosibirskogo gosudarstvennogo universiteta. Seriya: Informatsionnye tekhnologii, 2020, vol. 18, no. 4, pp. 11–27. doi: 10.25205/1818-7900-2020-18-4-11-27.
  9. Kolobov A.V., Malyshev K.V., Varfolomeev I.A., Ivanov D.A., Bogachev D.V. Effectiveness increasing of rolling mill operation due to prediction of uninterruptedly-casted block defects. Proizvodstvo prokata, 2017, no. 9, pp. 39–42. EDN: ZFPZKT.
  10. Zenisek J., Gröning H., Wild N., Huskic A., Affenzeller M. Machine Learning based Data Stream Merging in Additive Manufacturing. Procedia Computer Science, 2022, vol. 200, pp. 1422–1431. doi: 10.1016/j.procs.2022.01.343.
  11. Jain R., Lee U., Samal S., Park N. Machine-Learning-Guided Phase Identification and Hardness Prediction of Al-Co-Cr-Fe-Mn-Nb-Ni-V Containing High Entropy Alloys. Journal of Alloys and Compounds, 2023, vol. 956, article number 170193. doi: 10.1016/j.jallcom.2023.170193.
  12. Narula P., Kumar P.A., Vanaja J., Prasad Reddy G.V., Rao G.V.S. Machine learning assisted prediction of creep data of India specific reduced activation ferritic martensitic steel. Materials Today Communications, 2023, vol. 35, article number 106165. doi: 10.1016/j.mtcomm.2023.106165.
  13. Doroganov V.S., Pimonov A.G. Methods of statistical analysis and neural network technologies for prediction of metallurgical coke quality. Vestnik Kemerovskogo gosudarstvennogo universiteta, 2014, no. 4-3, pp. 123–129. EDN: TELNMP.
  14. Saoudi A., Fellah M., Hezil N., Lerari D., Khamouli F., Atoui L., Bachari K., Morozova J., Obrosov A., Samad M.A. Prediction of mechanical properties of welded steel X70 pipeline using neural network modelling. International Journal of Pressure Vessels and Piping, 2020, vol. 186, article number 104153. doi: 10.1016/j.ijpvp.2020.104153.
  15. Li C., Yin C., Xu X. Hybrid optimization assisted deep convolutional neural network for hardening prediction in steel. Journal of King Saud University – Science, 2021, vol. 33, no. 6, article number 101453. doi: 10.1016/j.jksus.2021.101453.
  16. Gao X., Qi K., Deng T., Qiu C., Zhou P., Du X. Application of Artificial Neural Network to Predicting Hardenability of Gear Steel. Journal of Iron and Steel Research International, 2006, vol. 13, no. 6, pp. 71–73. doi: 10.1016/S1006-706X(06)60114-3.
  17. Jiang L., Wang A., Tian N., Zhang W., Fan Q. BP Neural Network of Continuous Casting Technological Parameters and Secondary Dendrite Arm Spacing of Spring Steel. Journal of Iron and Steel Research International, 2011, vol. 18, no. 8, pp. 25–29. doi: 10.1016/S1006-706X(11)60099-X.
  18. De Oliveira Filho M.F., Caradec P.D.B., Calsaverini R., Spinelli J.E., Ishikawa T.T. Neural network for classification of MnS microinclusions in steels. Journal of Materials Research and Technology, 2023, vol. 24, pp. 8522–8532. doi: 10.1016/j.jmrt.2023.05.101.
  19. Gola J., Britz D., Staudt T., Winter M., Schneider A.S., Ludovici M., Mücklich F. Advanced microstructure classification by data mining methods. Computational Materials Science, 2018, vol. 148, pp. 324–335. doi: 10.1016/j.commatsci.2018.03.004.
  20. Gmurman V.E. Teoriya veroyatnostey i matematicheskaya statistika [Probability Theory and Mathematical Statistics]. Moscow, YuRAYT Publ., 2009. 478 p.
  21. Kudrya A.V., Sokolovskaya E.A. Prediction of the Destruction of Materials with an Inhomogeneous Structures. Fizika metallov i metallovedenie, 2022, vol. 123, no. 12, pp. 1334–1346. EDN: DROJHB.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c)



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies