Thermal stability and corrosion resistance of ultrafine-grained high-entropy Fe30Ni30Mn30Cr10 alloy

Cover Page

Cite item

Full Text

Abstract

One of the promising research areas developing in recent times in the materials science is the development and research of high-entropy alloys containing several metal elements with the concentration close to equiatomic. The interest to them is generated by the fact that such alloys demonstrate the improved mechanical and functional properties. Another promising area improving strength of metallic materials is grain refinement using the severe plastic deformation methods. This work uses both approaches to form an ultrafine-grained (UFG) structure in the high-entropy Fe30Ni30Mn30Cr10 alloy. The paper presents the structure, strength, thermal stability, and corrosion resistance of a high-entropy alloy subjected to the high pressure torsion (HPT). The study of the structure carried out by scanning electron microscopy showed that the application of the HPT deformation leads to the formation of an UFG structure with an average grain diameter less than 200 nm depending on temperature of HPT processing. Microhardness measuring and tensile tests at room temperature showed that after grain refinement, an increase in microhardness and ultimate tensile strength occurs in a high-entropy alloy, which is more than three times higher compared to the initial coarse-grained sample. At the same time, the UFG samples of a high-entropy alloy manifested thermal stability of microhardness after annealing up to temperature of 500 °С. The electrochemical tests carried out in an aqueous solution of 3.5 % NaCl at the temperature of 37 °С demonstrated a high corrosion resistance of the UFG high-entropy alloy.

About the authors

Konstantin M. Nesterov

Ufa University of Science and Technology, Ufa

Author for correspondence.
Email: kmnesterov@mail.ru
ORCID iD: 0000-0002-7053-3131

PhD (Physics and Mathematics), researcher of the Research Institute of Physics of Advanced Materials

Россия

Ruzil G. Farrakhov

Ufa University of Science and Technology, Ufa

Email: farrahov.rg@ugatu.su
ORCID iD: 0000-0001-6670-1537

PhD (Engineering), Associate Professor, assistant professor of Chair of Electronic Engineering

Россия

Veta R. Aubakirova

Ufa University of Science and Technology, Ufa

Email: veta_mr@mail.ru
ORCID iD: 0000-0002-8483-6408

PhD (Engineering), senior lecturer of Chair of Electronic Engineering

Россия

Rinat K. Islamgaliev

Ufa University of Science and Technology, Ufa

Email: rinatis@mail.ru
ORCID iD: 0000-0002-6234-7363

Doctor of Sciences (Physics and Mathematics), Professor, Professor of Chair of Materials Science and Physics of Metals

Россия

Arina R. Sirazeeva

Ufa University of Science and Technology, Ufa

Email: sirazeeva.arina@mail.ru
ORCID iD: 0000-0003-3841-2169

student

Россия

Adkham Abuayyash

Ufa University of Science and Technology, Ufa

Email: adhamabuayash4@gmail.com
ORCID iD: 0000-0002-0319-0992

postgraduate student

Россия

References

  1. Gromov V.E., Shlyarova Y.A., Vorob'ev S.V., Konovalov S.V., Peregudov O.A. Application of high-entropy alloys. Steel in Translation, 2021, vol. 51, no. 10, pp. 700–704. doi: 10.17073/0368-0797-2021-10-747-754.
  2. Anaman S.Y., Ansah S., Cho H.-H., Jo M.-G., Suh J.-Y., Kang M., Lee J.-S., Hong S.-T., Han H.N. An investigation of the microstructural effects on the mechanical and electrochemical properties of a friction stir processed equiatomic CrMnFeCoNi high entropy alloy. Journal of Materials Science and Technology, 2021, vol. 87, pp. 60–73. doi: 10.1016/j.jmst.2021.01.043.
  3. Tsai M.-H., Yeh J.-W. High-entropy alloys: a critical review. Materials Research Letters, 2014, vol. 2, no. 3, pp. 107–123. doi: 10.1080/21663831.2014.912690.
  4. Chen S.-T., Tang W.-Y., Kuo Y.-F., Chen S.-Y., Tsau C.-H., Shun T.-T., Yeh J.-W. Microstructure and properties of age-hardenable AlxCrFe1.5MnNi0.5 alloys. Materials Science and Engineering A, 2010, vol. 527, no. 21-22, pp. 5818–5825. doi: 10.1016/j.msea.2010.05.052.
  5. Tong C.-J., Chen M.-R., Chen S.-K., Yeh J.-W., Shun T.-T., Lin S.-J., Chang S.-Y. Mechanical performance of the AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2005, vol. 36, no. 5, pp. 1263–1271. doi: 10.1007/s11661-005-0218-9.
  6. Mary S.J., Nagalakshmi R., Epshiba R. High entropy alloys properties and its applications – an overview. European Chemical Bulletin, 2015, vol. 4, no. 6, pp. 279–284. doi: 10.17628/ecb.2015.4.279-284.
  7. Sitdikov V.D., Islamgaliev R.K., Nikitina M.A., Sitdikova G.F. Comprehensive use of X-ray techniques to study the structure of ultrafine-grained ferritic/martensitic steel. Journal of Materials Engineering and Performance, 2019, vol. 28, no. 11, pp. 7109–7118. doi: 10.1007/s11665-019-04440-1.
  8. Islamgaliev R.K., Nikitina M.A., Ganeev A.V., Sitdikov V.D. Strengthening mechanisms in ultrafine-grained martensitic steel. Materials Science and Engineering A, 2019, vol. 744, pp. 163–170. doi: 10.1016/j.msea.2018.11.141.
  9. Valiev R.Z., Zhilyaev A.P., Lengdon T.Dzh. Obemnye nanostrukturnye materialy: fundamentalnye osnovy i primeneniya [Bulk nanostructured materials: fundamentals and applications]. Sankt Petersburg, Eko-Vektor Publ., 2017. 480 p.
  10. Osintsev K.A., Gromov V.E., Konovalov S.V., Ivanov Yu.F., Panchenko I.A. High-entropy alloys: structure, mechanical properties, deformation mechanisms and application. Izvestiya vysshikh uchebnykh zavedeniy. Chernaya metallurgiya, 2021, vol. 64, no. 4, pp. 249–258. doi: 10.17073/0368-0797-2021-4-249-258.
  11. Sathiyamoorthi P., Kim H.S. High-entropy alloys with heterogeneous microstructure: Processing and mechanical properties. Progress in Materials Science, 2022, vol. 123, article number 100709. doi: 10.1016/j.pmatsci.2020.100709.
  12. Miracle D.B., Senkov O.N. A critical review of high entropy alloys and related concepts. Acta Materialia, 2017, vol. 122, pp. 448–511. doi: 10.1016/j.actamat.2016.08.081.
  13. Cantor B., Chang I.T.H., Knight P., Vincent A.J.B. Microstructural development in equiatomic multicomponent alloys. Materials Science and Engineering A, 2004, vol. 375-377, no. 1-2 SPEC ISS, pp. 213–218. doi: 10.1016/j.msea.2003.10.257.
  14. Klimova M., Shaysultanov D., Semenyuk A., Zherebtsov S., Stepanov N. Effect of carbon on recrystallised microstructures and properties of CoCrFeMnNi-type high-entropy alloys. Journal of Alloys and Compounds, 2021, vol. 851, article number 156839. doi: 10.1016/j.jallcom.2020.156839.
  15. Kourov N.I., Pushin V.G., Korolev A.V., Knyazev Y.V., Ivchenko M.V., Ustyugov Y.M. Peculiar features of physical properties of the rapid quenched AlCrFeCoNiCu high-entropy alloy. Journal of Alloys and Compounds, 2015, vol. 636, pp. 304–309. doi: 10.1016/j.jallcom.2014.12.012.
  16. Kumar N.A.P.K., Li C., Leonard K.J., Bei H., Zinkle S.J. Microstructural stability and mechanical behavior of FeNiMnCr high entropy alloy under ion irradiation. Acta Materialia, 2016, vol. 113, pp. 230–244. doi: 10.1016/j.actamat.2016.05.007.
  17. Hoffman A., He L., Luebbe M., Pommerenke H., Duan J., Cao P., Sridharan K., Lu Z., Wen H. Effects of Al and Ti additions on irradiation behavior of FeMnNiCr multi-principal-element alloy. JOM, 2020, vol. 72, no. 1, pp. 150–159. doi: 10.1007/s11837-019-03871-4.
  18. Scully J.R. Polarization resistance method for determination of instantaneous corrosion rates. Corrosion, 2000, vol. 56, no. 2, pp. 199–217. doi: 10.5006/1.3280536.
  19. De Cooman B.C., Estrin Y., Kim S.K. Twinning-induced plasticity (TWIP) steels. Acta Materialia, 2018, vol. 142, pp. 283–362. doi: 10.1016/j.actamat.2017.06.046.
  20. Gigax J.G., El-Atwani O., McCulloch Q., Aytuna B., Efe M., Fensin S., Maloy S.A., Li N. Micro- and mesoscale mechanical properties of an ultra-fine grained CrFeMnNi high entropy alloy produced by large strain machining. Scripta Materialia, 2020, vol. 178, pp. 508–512. doi: 10.1016/j.scriptamat.2019.11.042.
  21. Huang S., Huang H., Li W., Kim D., Lu S., Li X., Holmström E., Kwon S.K., Vitos L. Twinning in metastable high-entropy alloys. Nature Communications, 2018, vol. 9, no. 1, article number 2381. doi: 10.1038/s41467-018-04780-x.
  22. Hsu Y.J., Chiang W.C., Wu J.K. Corrosion behavior of FeCoNiCrCux high-entropy alloys in 3.5% sodium chloride solution. Materials Chemistry and Physics, 2005, vol. 92, no. 1, pp. 112–117. doi: 10.1016/j.matchemphys.2005.01.001.
  23. Koch C.C., Scattergood R.O., Darling K.A., Semones J.E. Stabilization of nanocrystalline grain sizes by solute additions. Journal of Materials Science, 2008, vol. 43, no. 23-24, pp. 7264–7272. doi: 10.1007/s10853-008-2870-0.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c)



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies