Thermal stability and corrosion resistance of ultrafine-grained high-entropy Fe30Ni30Mn30Cr10 alloy
- Authors: Nesterov K.M.1, Farrakhov R.G.1, Aubakirova V.R.1, Islamgaliev R.K.1, Sirazeeva A.R.1, Abuayyash A.1
-
Affiliations:
- Ufa University of Science and Technology, Ufa
- Issue: No 4 (2022)
- Pages: 81-89
- Section: Articles
- URL: https://vektornaukitech.ru/jour/article/view/810
- DOI: https://doi.org/10.18323/2782-4039-2022-4-81-89
- ID: 810
Cite item
Full Text
Abstract
One of the promising research areas developing in recent times in the materials science is the development and research of high-entropy alloys containing several metal elements with the concentration close to equiatomic. The interest to them is generated by the fact that such alloys demonstrate the improved mechanical and functional properties. Another promising area improving strength of metallic materials is grain refinement using the severe plastic deformation methods. This work uses both approaches to form an ultrafine-grained (UFG) structure in the high-entropy Fe30Ni30Mn30Cr10 alloy. The paper presents the structure, strength, thermal stability, and corrosion resistance of a high-entropy alloy subjected to the high pressure torsion (HPT). The study of the structure carried out by scanning electron microscopy showed that the application of the HPT deformation leads to the formation of an UFG structure with an average grain diameter less than 200 nm depending on temperature of HPT processing. Microhardness measuring and tensile tests at room temperature showed that after grain refinement, an increase in microhardness and ultimate tensile strength occurs in a high-entropy alloy, which is more than three times higher compared to the initial coarse-grained sample. At the same time, the UFG samples of a high-entropy alloy manifested thermal stability of microhardness after annealing up to temperature of 500 °С. The electrochemical tests carried out in an aqueous solution of 3.5 % NaCl at the temperature of 37 °С demonstrated a high corrosion resistance of the UFG high-entropy alloy.
About the authors
Konstantin M. Nesterov
Ufa University of Science and Technology, Ufa
Author for correspondence.
Email: kmnesterov@mail.ru
ORCID iD: 0000-0002-7053-3131
PhD (Physics and Mathematics), researcher of the Research Institute of Physics of Advanced Materials
РоссияRuzil G. Farrakhov
Ufa University of Science and Technology, Ufa
Email: farrahov.rg@ugatu.su
ORCID iD: 0000-0001-6670-1537
PhD (Engineering), Associate Professor, assistant professor of Chair of Electronic Engineering
РоссияVeta R. Aubakirova
Ufa University of Science and Technology, Ufa
Email: veta_mr@mail.ru
ORCID iD: 0000-0002-8483-6408
PhD (Engineering), senior lecturer of Chair of Electronic Engineering
РоссияRinat K. Islamgaliev
Ufa University of Science and Technology, Ufa
Email: rinatis@mail.ru
ORCID iD: 0000-0002-6234-7363
Doctor of Sciences (Physics and Mathematics), Professor, Professor of Chair of Materials Science and Physics of Metals
РоссияArina R. Sirazeeva
Ufa University of Science and Technology, Ufa
Email: sirazeeva.arina@mail.ru
ORCID iD: 0000-0003-3841-2169
student
РоссияAdkham Abuayyash
Ufa University of Science and Technology, Ufa
Email: adhamabuayash4@gmail.com
ORCID iD: 0000-0002-0319-0992
postgraduate student
РоссияReferences
- Gromov V.E., Shlyarova Y.A., Vorob'ev S.V., Konovalov S.V., Peregudov O.A. Application of high-entropy alloys. Steel in Translation, 2021, vol. 51, no. 10, pp. 700–704. doi: 10.17073/0368-0797-2021-10-747-754.
- Anaman S.Y., Ansah S., Cho H.-H., Jo M.-G., Suh J.-Y., Kang M., Lee J.-S., Hong S.-T., Han H.N. An investigation of the microstructural effects on the mechanical and electrochemical properties of a friction stir processed equiatomic CrMnFeCoNi high entropy alloy. Journal of Materials Science and Technology, 2021, vol. 87, pp. 60–73. doi: 10.1016/j.jmst.2021.01.043.
- Tsai M.-H., Yeh J.-W. High-entropy alloys: a critical review. Materials Research Letters, 2014, vol. 2, no. 3, pp. 107–123. doi: 10.1080/21663831.2014.912690.
- Chen S.-T., Tang W.-Y., Kuo Y.-F., Chen S.-Y., Tsau C.-H., Shun T.-T., Yeh J.-W. Microstructure and properties of age-hardenable AlxCrFe1.5MnNi0.5 alloys. Materials Science and Engineering A, 2010, vol. 527, no. 21-22, pp. 5818–5825. doi: 10.1016/j.msea.2010.05.052.
- Tong C.-J., Chen M.-R., Chen S.-K., Yeh J.-W., Shun T.-T., Lin S.-J., Chang S.-Y. Mechanical performance of the AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2005, vol. 36, no. 5, pp. 1263–1271. doi: 10.1007/s11661-005-0218-9.
- Mary S.J., Nagalakshmi R., Epshiba R. High entropy alloys properties and its applications – an overview. European Chemical Bulletin, 2015, vol. 4, no. 6, pp. 279–284. doi: 10.17628/ecb.2015.4.279-284.
- Sitdikov V.D., Islamgaliev R.K., Nikitina M.A., Sitdikova G.F. Comprehensive use of X-ray techniques to study the structure of ultrafine-grained ferritic/martensitic steel. Journal of Materials Engineering and Performance, 2019, vol. 28, no. 11, pp. 7109–7118. doi: 10.1007/s11665-019-04440-1.
- Islamgaliev R.K., Nikitina M.A., Ganeev A.V., Sitdikov V.D. Strengthening mechanisms in ultrafine-grained martensitic steel. Materials Science and Engineering A, 2019, vol. 744, pp. 163–170. doi: 10.1016/j.msea.2018.11.141.
- Valiev R.Z., Zhilyaev A.P., Lengdon T.Dzh. Obemnye nanostrukturnye materialy: fundamentalnye osnovy i primeneniya [Bulk nanostructured materials: fundamentals and applications]. Sankt Petersburg, Eko-Vektor Publ., 2017. 480 p.
- Osintsev K.A., Gromov V.E., Konovalov S.V., Ivanov Yu.F., Panchenko I.A. High-entropy alloys: structure, mechanical properties, deformation mechanisms and application. Izvestiya vysshikh uchebnykh zavedeniy. Chernaya metallurgiya, 2021, vol. 64, no. 4, pp. 249–258. doi: 10.17073/0368-0797-2021-4-249-258.
- Sathiyamoorthi P., Kim H.S. High-entropy alloys with heterogeneous microstructure: Processing and mechanical properties. Progress in Materials Science, 2022, vol. 123, article number 100709. doi: 10.1016/j.pmatsci.2020.100709.
- Miracle D.B., Senkov O.N. A critical review of high entropy alloys and related concepts. Acta Materialia, 2017, vol. 122, pp. 448–511. doi: 10.1016/j.actamat.2016.08.081.
- Cantor B., Chang I.T.H., Knight P., Vincent A.J.B. Microstructural development in equiatomic multicomponent alloys. Materials Science and Engineering A, 2004, vol. 375-377, no. 1-2 SPEC ISS, pp. 213–218. doi: 10.1016/j.msea.2003.10.257.
- Klimova M., Shaysultanov D., Semenyuk A., Zherebtsov S., Stepanov N. Effect of carbon on recrystallised microstructures and properties of CoCrFeMnNi-type high-entropy alloys. Journal of Alloys and Compounds, 2021, vol. 851, article number 156839. doi: 10.1016/j.jallcom.2020.156839.
- Kourov N.I., Pushin V.G., Korolev A.V., Knyazev Y.V., Ivchenko M.V., Ustyugov Y.M. Peculiar features of physical properties of the rapid quenched AlCrFeCoNiCu high-entropy alloy. Journal of Alloys and Compounds, 2015, vol. 636, pp. 304–309. doi: 10.1016/j.jallcom.2014.12.012.
- Kumar N.A.P.K., Li C., Leonard K.J., Bei H., Zinkle S.J. Microstructural stability and mechanical behavior of FeNiMnCr high entropy alloy under ion irradiation. Acta Materialia, 2016, vol. 113, pp. 230–244. doi: 10.1016/j.actamat.2016.05.007.
- Hoffman A., He L., Luebbe M., Pommerenke H., Duan J., Cao P., Sridharan K., Lu Z., Wen H. Effects of Al and Ti additions on irradiation behavior of FeMnNiCr multi-principal-element alloy. JOM, 2020, vol. 72, no. 1, pp. 150–159. doi: 10.1007/s11837-019-03871-4.
- Scully J.R. Polarization resistance method for determination of instantaneous corrosion rates. Corrosion, 2000, vol. 56, no. 2, pp. 199–217. doi: 10.5006/1.3280536.
- De Cooman B.C., Estrin Y., Kim S.K. Twinning-induced plasticity (TWIP) steels. Acta Materialia, 2018, vol. 142, pp. 283–362. doi: 10.1016/j.actamat.2017.06.046.
- Gigax J.G., El-Atwani O., McCulloch Q., Aytuna B., Efe M., Fensin S., Maloy S.A., Li N. Micro- and mesoscale mechanical properties of an ultra-fine grained CrFeMnNi high entropy alloy produced by large strain machining. Scripta Materialia, 2020, vol. 178, pp. 508–512. doi: 10.1016/j.scriptamat.2019.11.042.
- Huang S., Huang H., Li W., Kim D., Lu S., Li X., Holmström E., Kwon S.K., Vitos L. Twinning in metastable high-entropy alloys. Nature Communications, 2018, vol. 9, no. 1, article number 2381. doi: 10.1038/s41467-018-04780-x.
- Hsu Y.J., Chiang W.C., Wu J.K. Corrosion behavior of FeCoNiCrCux high-entropy alloys in 3.5% sodium chloride solution. Materials Chemistry and Physics, 2005, vol. 92, no. 1, pp. 112–117. doi: 10.1016/j.matchemphys.2005.01.001.
- Koch C.C., Scattergood R.O., Darling K.A., Semones J.E. Stabilization of nanocrystalline grain sizes by solute additions. Journal of Materials Science, 2008, vol. 43, no. 23-24, pp. 7264–7272. doi: 10.1007/s10853-008-2870-0.