Special aspects of structure formation of a transition zone in a layer composite produced by explosion welding

Cover Page

Cite item

Full Text

Abstract

The paper presents the research on special aspects of structure formation in the transition zones of a layer metal material made of structural carbon and alloy stainless steels with an internal protector. The authors specify the order of layers arrangement. As an industrial method of producing such a material, the explosion welding technology was selected, which ensures the production of three-, four- and six-layer materials with one and two internal protectors per one explosion. The selection of optimal process parameters was carried out using computer modeling in the LS-DYNA software product. By calculation, the authors determined the main technological parameters of the process, which provide in the contact zone at each interlayer boundary the ratio of the amplitude of the generated waves to their length in the range from 0.3 to 0.5. Mechanical tests of multilayer workpieces were carried out. The shear strength of layers was from 320 to 410 MPa, the ultimate tensile strength of the main layer was from 520 to 710 MPa, the impact resistance was from 290 to 740 kJ/m2, and the bending angle under static loading was 140 degrees and higher. The authors determined the phase composition and characteristics of the crystallographic structure of transition zones of a layer metal material with an internal protector. The study identified the presence of γ-Fe with a face-centered crystal lattice, two cubic structures, one hexagonal, and one orthorhombic. On the samples with artificial pitting, the authors determined their influence on the rate of anodic dissolution of a protective layer when contacting with an aggressive environment. The study shows that the interlayer boundaries with a homogeneous structure and minimal thickness have the highest corrosion resistance.

About the authors

Andrey E. Rozen

Penza State University, Penza

Email: aerozen@bk.ru
ORCID iD: 0000-0003-3362-9617

Doctor of Sciences (Engineering), Professor, Head of Chair “Welding, Foundry Engineering, and Materials Science”

Russian Federation

Irina L. Kharina

JSC “RPA “CNIITMASH”, Moscow

Email: cniitmash@cniitmash.com
ORCID iD: 0000-0002-1847-2917

PhD (Engineering), chief researcher of the Laboratory of Corrosion Tests

Russian Federation

Andrey S. Gudenko

JSC “RPA “CNIITMASH”, Moscow

Email: andgas@gmail.com
ORCID iD: 0000-0001-6459-9516

PhD (Engineering), Head of Department of Physical and Chemical Methods of Metal Research

Russian Federation

Aleksey V. Pryshchak

Penza State University, Penza

Email: metal@pnzgu.ru
ORCID iD: 0000-0003-1770-6678

PhD (Engineering), assistant professor of Chair “Welding, Foundry Engineering, and Materials Science”

Russian Federation

Aleksandr V. Khorin

Penza State University, Penza

Author for correspondence.
Email: alexkho154@yandex.ru
ORCID iD: 0000-0001-7164-7942

PhD (Engineering), assistant professor of Chair “Control and Material Tests”

Russian Federation

Viktor M. Batrashov

Penza State University, Penza

Email: metal@pnzgu.ru
ORCID iD: 0000-0001-8475-2987

PhD (Engineering), assistant professor of Chair “Control and Material Tests”

Russian Federation

Maksim S. Guskov

Penza State University, Penza

Email: metal@pnzgu.ru
ORCID iD: 0000-0002-4143-576X

PhD (Engineering), assistant professor of Chair “Control and Material Tests”

Russian Federation

Andrey A. Rozen

Penza State University, Penza

Email: aarozen@bk.ru
ORCID iD: 0000-0002-3970-1707

postgraduate student of Chair “Welding, Foundry Engineering, and Materials Science”

Russian Federation

Dmitry V. Kozlov

Penza State University, Penza

Email: d_v_kozlov@yahoo.com
ORCID iD: 0000-0003-2501-7768

postgraduate student of Chair “Welding, Foundry Engineering, and Materials Science”

Russian Federation

References

  1. Akpanyung K.V., Loto R.T. Pitting corrosion evaluation: a review. Journal of Physics: Conference Series, 2019, vol. 1378, no. 2, article number 022088. doi: 10.1088/1742-6596/1378/2/022088.
  2. Jafarzadeh S., Chen Z., Bobaru F. Computational modeling of pitting corrosion. Corrosion reviews, 2019, vol. 37, no. 5, pp. 419–439. doi: 10.1515/corrrev-2019-0049.
  3. Xiang Y., Li C., Hesitao W., Long Z., Yan W. Understanding the pitting corrosion mechanism of pipeline steel in an impure supercritical CO2 environment. The Journal of Supercritical Fluids, 2018, vol. 138, pp. 132–142. doi: 10.1016/j.supflu.2018.04.009.
  4. Frankel G.S., Li T., Scully J.R. Localized corrosion: Passive film breakdown vs pit growth stability. Journal of the electrochemical society, 2017, vol. 164, no. 4, pp. C180–C181. doi: 10.1149/2.1381704 jes.
  5. Chi G., Yi D., Liu H. Effect of roughness on electrochemical and pitting corrosion of Ti-6Al-4V alloy in 12 wt.% HCl solution at 35 °C. Journal of Materials Research and Technology, 2020, vol. 9, no. 2, pp. 1162–1174. doi: 10.1016/j.jmrt.2019.11.044.
  6. Obeyesekere N. Pitting corrosion. Trends in Oil and Gas Corrosion Research and Technologies, 2017, pp. 215–248. doi: 10.1016/B978-0-08-101105-8.00009-7.
  7. Ha H.-Y., Lee T.-H., Lee C.-G., Yoon H. Understanding the relation between pitting corrosion resistance and phase fraction of S32101 duplex stainless steel. Corrosion Science, 2019, vol. 149, pp. 226–235. doi: 10.1016/j.corsci.2019.01.001.
  8. Wei L., Liu Y., Li Q., Cheng Y.F. Effect of roughness on general corrosion and pitting of (FeCoCrNi)0.89(WC)0.11 high-entropy alloy composite in 3.5 wt.% NaCl solution. Corrosion Science, 2019, vol. 146, pp. 44–57. doi: 10.1016/j.corsci.2018.10.025.
  9. Mohammed S., Hua Y., Barker R., Neville A. Investigating pitting in X65 carbon steel using potentiostatic polarization. Applied Surface Science, 2017, vol. 423, pp. 25–32. doi: 10.1016/j.apsusc.2017.06.015.
  10. Grachev V.A., Rozen A.E., Perelygin Y.P., Kireev S.Y., Los I.S., Rozen A.A. Measuring corrosion rate and protector effectiveness of advanced multilayer metallic materials by newly developed methods. Heliyon, 2018, vol. 4, no. 8, article number e00731. doi: 10.1016/j.heliyon.2018.e00731.
  11. Rozen A.E., Kireev S.Yu., Dub A.V., Safonov I.A., Makarova E.A., Rozen A.A., Isakov E.G., Korolkov A.O. Special aspects of arc welding of a laminated corrosion-resistant material. Frontier Materials & Technologies, 2021, no. 4, pp. 57–68. doi: 10.18323/2782-4039-2021-4-57-68.
  12. Grachev V.A., Rozen A.E., Perelygin Yu.P., Kireev S.Yu., Los’ I.S., Rozen A.A. Accelerated Corrosion Tests of a New Class of Multilayer Metallic Materials with an Internal Protector. Russian Metallurgy (Metally), 2019, no. 3, pp. 247–256. doi: 10.1134/S0036029519030030.
  13. Rozen A.E., Korneev A.E., Khorin A.V., Pryshchak A.V., Gudenko A.S., Rozen A.A., Kozlov D.V. Structural formation of interlayer boundaries layered metal material in explosion welding. Izvestiya Volgogradskogo gosudarstvennogo tekhnicheskogo universiteta, 2020, no. 11, pp. 41–45. doi: 10.35211/1990-5297-2020-11-246-41-45.
  14. Saikov I.V., Malakhov A.Y., Saikova G.R., Denisov I.V., Gulyaev P.Y. Influence of Explosive Welding Parameters on the Structure of Interface in Brass–Invar Thermobimetal. Inorganic Materials: Applied Research, 2020, vol. 11, no. 2, pp. 448–452. doi: 10.1134/S2075113320020331.
  15. Malakhov A.Y., Saikov I.V., Denisov I.V. Brass–Invar Bimetal Interface in the Joint Formed by Explosive Welding. Russian Metallurgy (Metally), 2021, vol. 2021, no. 10, pp. 1289–1293. doi: 10.1134/S0036029521100219.
  16. Bataev I.A., Lazurenko D.V., Malyutina Y.N., Nikulina A.A., Bataev A.A., Mats O.E., Kuchumova I.D. Ultrahigh cooling rates at the interface of explosively welded materials and their effect on the formation of the structure of mixing zones. Combustion, Explosion, and Shock Waves, 2018, vol. 54, no. 2, pp. 238–245. doi: 10.15372/FGV20180213.
  17. Bataev I.A. Structure of explosively welded materials: experimental study and numerical simulation. Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty), 2017, no. 4, pp. 55–67. doi: 10.17212/1994-6309-2017-4-55-67.
  18. Mukhutdinov A.R., Garifullin R.Sh., Efimov M.G., Vakhidova Z.R. Explosion welding simulation using Ansys autodyne. Vzryvnoe delo, 2019, no. 125-82, pp. 65–73.
  19. Marinin M.A., Khokhlov S.V., Isheyskiy V.A. Modeling of the welding process of flat sheet parts by an explosion. Zapiski Gornogo instituta, 2019, vol. 237, pp. 275–280. doi: 10.31897/pmi.2019.3.275.
  20. Los I.S. Corrosion-resistance evaluation of multi-layered metal materials. Voprosy materialovedeniya, 2016, no. 3, pp. 138–144.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c)



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies