No 4 (2018)

Full Issue

MODIFICATION OF CEMENT BY FEW-LAYER GRAPHENE

Al-Shiblavi K.A., Pershin V.F., Pasko T.V.

Abstract

Improving the performance characteristics of concrete and, above all, the compression and bending strength is a very urgent task. This problem is usually solved by modifying concrete with various organic and inorganic products of the chemical industry. In the last decade, nanomaterials, including carbon nanomaterials, are actively used as modifiers. Few-layer graphene and graphene oxide are the most promising modifiers. Few-layer graphene can be produced on an industrial scale using the liquid-phase shear exfoliation of crystalline graphite. This technology is fundamentally different from that of producing few-layer graphene from graphite oxide since it does not use strong acids and ultrasound processing, which reduces the cost of the finished product by ten folds. The paper presents the results of the study of the process of modifying cement mixtures with the few-layer graphene produced by the liquid-phase shearing exfoliation of graphite. The modification was carried out by using slurry as mixing water with the few-layer graphene concentrations of 0.02 to 0.07 % relative to cement. To determine the strength characteristics of cement, 40×40×160 mm sample beams were made. Cement solutions and samples were prepared in full compliance with the Standards. The samples were tested for compression and three-point bending. It was experimentally established that the maximum relative strength is achieved at the 0.05–0.06 wt. % concentration (relative to cement) of few-layer graphene, and the further increase in concentration does not lead to the increase in strength. In particular, the compressive strength increases 1.7–2.5 times, when the bending strength increases 1.2–1.5 times. It should be particularly noted that as the compressive strength of a control sample (not modified with the few-layer graphene) increases, the modification effectiveness decreases.

Frontier Materials & Technologies. 2018;(4):6-11
pages 6-11 views

THE PECULIARITIES OF BRITTLE-PLASTIC TRANSITION IN THE FERROUS POWDERED MATERIALS

Egorova R.V., Egorov M.S.

Abstract

The issue of the study of the porous bodies’ deformation and the plasticity of their materials is important as it is related to the production of complex parts using the wide opportunities of drop stamping (DS). In this case, the increased requirements are imposed on the porous material plasticity as the emergent defects may be not removed at the final DS stages what impairs the strength properties. The information about the plasticity properties of a porous material in the heated state allows properly developing the technology of complex parts’ DS.

The paper investigates such structural defect of powdered materials as the porosity. The authors studied its influence on the mechanical properties of materials and analyzed the regularities of these properties’ changes in the interval of brittleplastic transition temperatures. The mechanical tests of the powdered specimens were carried out with the identification of the main dependencies of mechanical properties on the porosity in the interval of brittle-plastic transition temperatures. The authors selected the main deformation modes when the crack resistance is studied, identified the main factors influencing the peculiarities of brittle-plastic transition in the powdered materials, described the phenomena where the crack formation takes place, as well as defined the details of this process.

The study identified the nature of change of the strength coldbrittleness temperature (TCL) and the plasticity coldbrittleness temperature (TCH): if TCL increases with the increase in porosity, TCH decreases under the same condition. Thus, at the specimen porosity of 3–5 %, its value, depending on the powder type, is 100–150 K, and at the porosity of 10– 15 %, it is lower than 77 K for all powders.

Frontier Materials & Technologies. 2018;(4):12-17
pages 12-17 views

THE RESEARCH OF POLYPROPYLENE FABRICS WITH VOLATILE CORROSION INHIBITOR FOR PACKAGING OF ZINC-COATED PRODUCTS

Ponomarev A.P., Medyanik N.L., Tarasyuk E.V., Kolyada L.G.

Abstract

During operation, long-term storage and transportation through various climatic zones, metal products are exposed to the atmospheric corrosion that leads to billions of losses every year. One of the most progressive and effective methods of corrosion protection is the application of the volatile corrosion inhibitors characterized by high vapor pressure, the ability to saturate closed space with their vapors, to be absorbed by a metal surface and to inhibit the corrosion processes. Polyethylene films, crepe papers, and combined materials are the carriers of volatile inhibitors. The aim of the paper is the study of the performance properties of the polypropylene laminated fabrics used for packaging of zinc-coated metal goods. These fabrics have a number of advantages: durability, moisture resistance, they are easy to weld and sew. The authors carried out the comparative studies of various properties of new packaging materials for metal goods and selected the best-performing material. Physical-mechanical and barrier properties of polypropylene laminated fabric with and without volatile corrosion inhibitor are investigated. The study evaluated the protective ability of polypropylene laminated fabrics for the zinc-coated wire. Tests were carried out under the standard techniques; the inhibitor content was determined using the method of simultaneous thermal analysis and the method of “Walki Wisa” company. The comparative study showed that the polypropylene laminated fabric with the CORTEC corrosion inhibitor had the higher strength (when laminating as well) and deformation properties, better protective ability against corrosion. It is characterized by lower values of water absorption and vapor transmission. The authors propose the recommendations for improving the quality of polypropylene laminated fabric for corrosion protection of zinc-coated metal goods.

Frontier Materials & Technologies. 2018;(4):18-23
pages 18-23 views

THE STUDY OF HARD TURNING OF 105WCr6 STEEL

Rastorguev D.A., Sevastiyanov A.A.

Abstract

The paper presents the results of the experiment on the processing of 105WCr6 steel ring blanks prehardened up to the HRC 55 hardness. This material is applied to produce cutting and measuring tools with the high requirements for the accuracy in size and flatness after the thermal treatment. The experiment involved the ring facing using the 16B16T1C1 machine with the CBN plate cutter without the use of a lubricating and cooling fluid. The cutting rate and the advancement and depth of cutting were varied during the three-factor experiment. For the wider industrial application, hard turning requires the additional research related to the study of special aspects of chip formation, the identification of the dependencies of cutting forces and temperature in the cutting zone on the processing mode. The authors studied the chip formation process and the quality of processed surface and carried out the systematization of chip types depending on the cutting modes. The main technology factor determining a chip type is the cutting rate. When it increases the chip type changes from a continuous chip through a transition form to a segmental chip. When zooming in a chip, the welldefined chip segmentation can be seen. When increasing the cutting rate the segments become more defined that causes the change of a chip type. At the critical value of the cutting rate, the chip comes from a discontinuous one to a segmental chip. In this case, the dynamic component of cutting force related to the chip formation process grows. Such change in the cutting process dynamics is accompanied by the corresponding traces of a tool on a processed surface. Stable type of chip formation promotes the formation of a surface with the regular minimum height microrelief. The growth of chip formation dynamism, when increasing the cutting rate, causes the formation of a moire effect on a processed surface. The study identified the processing modes optimal in terms of efficiency, surface condition and chip type. The results obtained can be used to organize an automated manufacturing with the use of CNC machines and automatic lines.

Frontier Materials & Technologies. 2018;(4):24-32
pages 24-32 views

TECHNICAL SOLUTIONS FOR BURNING OF THE DEPRESSED IONIZED GAS FUEL IN THE ELECTRIC FIELD

Romanchikov, S.A.

Abstract

To improve the efficiency of gas equipment, the author proposes a technical solution for the device for forcing ionization of gas fuel. The principle of its operation is based on the use of the method of burning of the depleted ionized gas fuel in the electric field. The proposed method ensures maximum combustion of gas fuel, the reduction of heat losses for air heating, soot formation on the heat exchange surfaces, thermal resistance, as well as the completeness of chemical combustion.
The novelty of technical solution is the creation of the catalytic electric field by means of incorporating an ionizing device into the design of a gas stove that supplies the voltage of 7 kV to the electrodes with the current force of 2...3 mA. The additional electrification of gas fuel ensures the formation of Coulomb forces, intensifies the combustion, and the convection heat exchange increases due to the electroconvection.
The device design provides for the placement of electrodes at a distance of 50 mm from each other. The electrodes are powered from the voltage source (high-voltage transformer, through a rectifier). The fastening of the electrodes is performed using the ring porcelain insulators. Structural changes of the stove provide the increased temperature of the torch and the radiation power both in the visible and infrared range and in the ultraviolet. The additional electrolysis of the fuel mixture and the acceleration of its burning rate are achieved by the ionization.
The experimental studies carried out to determine the characteristics of the processes of gas fuel combustion (isobutane (CH3–CH(CH3)–CH3) – 72 %, butane (CH3–CH2–CH2–CH3) – 22 %, propane (С3Н8) – 6 %) in the electric field of the variable intensity allowed establishing that the constructional solution provides the increase in the temperature of the frying deck by 39 %, heat transfer – by 2 times, the efficiency factor – by 22 %, the reduction of carbon oxides – by 31...36 %, and the gas fuel consumption when cooking – by 26 %.

Frontier Materials & Technologies. 2018;(4):33-39
pages 33-39 views

THE CALCULATION-EXPERIMENTAL DETERMINATION OF PENETRATION OF A SPOT WELDED BY A FIXED ARC

Sidorov V.P., Melzitdinova A.V.

Abstract

The modern software systems simulating the welding process do not cover all its specific features. For example, they are too cumbersome to be applied in the penetration automatic regulation according to the mathematical model. For this purpose, the authors proposed using a mathematical model of heat distribution within the parts from a normal circular heat source acting on the flat layer surface. The coefficients of such a model should be determined by the experiments close to the data of a problem to be solved (the reduction method). The paper presents the results of hanging surfacing of spots on the 12H18N10T high-alloy steel plate of 4 mm thick. To record in time the welding arc current in argon medium with the non-consumable electrodes, the authors used the recorder. The relative deviations of the spots’ diameters from the average value were checked for the compliance with the normal distribution law. It is determined that the deviations of the spots’ shape from the circle do not meet this law. The average diameters of the obtained spots were used to predict the penetration depth, which was determined by macrosections with the 20 amplification. In this case, the authors used several values of axial heat flux of the heat source: 2800, 3500 and 4200 W/cm2. The values of thermal diffusivity were taken from literature data averaged a=0.04 cm2/s. Using the diameters of spots, the effective power of the welding arc and the specific effective power per 1A of welding current were calculated. The penetration of the spots was calculated using the average power density. The best convergence of calculated and experimental data was obtained at the axial heat flux of 2800 W/cm2; it averages about 5 % in absolute value. Similar results were obtained when predicting the diameters of spots using penetration depth. Thus, the authors developed the technique for determining three coefficients of the model to apply them for the welding process automatic control.

Frontier Materials & Technologies. 2018;(4):40-47
pages 40-47 views

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies