Electrochemical interaction between biodegradable ZX10 and WZ31 magnesium alloys and medical Ti6Al4V titanium alloy
- Authors: Myagkikh P.N.1, Merson E.D.1, Poluyanov V.A.1, Merson D.L.1, Begun M.E.1
-
Affiliations:
- Togliatti State University
- Issue: No 4 (2024)
- Pages: 63-71
- Section: Articles
- URL: https://vektornaukitech.ru/jour/article/view/993
- DOI: https://doi.org/10.18323/2782-4039-2024-4-70-6
- ID: 993
Cite item
Abstract
Magnesium-based alloys are a modern material for the production of biodegradable (self-dissolving) surgical implants. Magnesium is a metal with the most negative electrode potential of all structural materials: −2.37 V. This means that close arrangement of implants made of magnesium and, for example, titanium alloys will lead to the occurrence of a galvanic effect and accelerated electrochemical corrosion of magnesium. However, it is unknown how the ratio of the areas of titanium and magnesium products affects the magnitude of this effect. This work covers this issue. In the presented study, cylindrical samples of biodegradable ZX10 and WZ31 magnesium alloys were placed in physiological Ringer’s solution at a distance of 3 cm from a sample of medical Ti6Al4V alloy of the same shape and size. During the test, the temperature of the corrosive environment was maintained at 37 °C. The series of experiments included corrosion tests lasting three days with the participation of one, two or four magnesium samples, thus the area ratios between the titanium and magnesium alloy were 1:1, 1:2 and 1:4. It was found that for both magnesium alloys, with an increase in the area ratio, the effect of electrochemical action decreases significantly, which is expressed in a decrease in the corrosion rate. At the same time, for the WZ31 alloy, the effect of the presence of Ti6Al4V on the corrosion rate is significantly weaker than for ZX10, which is explained by the presence of the LPSO phase in the alloy, as well as a more alloyed matrix and, accordingly, having a more positive electrode potential.
About the authors
Pavel N. Myagkikh
Togliatti State University
Author for correspondence.
Email: p.myagkikh@tltsu.ru
ORCID iD: 0000-0002-7530-9518
PhD (Engineering), junior researcher of the Research Institute of Advanced Technologies
Россия, 445020, Russia, Togliatti, Belorusskaya Street, 14Evgeny D. Merson
Togliatti State University
Email: mersoned@gmail.com
ORCID iD: 0000-0002-7063-088X
PhD (Physics and Mathematics), senior researcher of the Research Institute of Advanced Technologies
Россия, 445020, Russia, Togliatti, Belorusskaya Street, 14Vitaly A. Poluyanov
Togliatti State University
Email: vitaliy.poluyanov@gmail.com
ORCID iD: 0000-0002-0570-2584
PhD (Engineering), junior researcher of the Research Institute of Advanced Technologies
Россия, 445020, Russia, Togliatti, Belorusskaya Street, 14Dmitry L. Merson
Togliatti State University
Email: D.Merson@tltsu.ru
ORCID iD: 0000-0001-5006-4115
Doctor of Sciences (Physics and Mathematics), Professor, Director of the Research Institute of Advanced Technologies
Россия, 445020, Russia, Togliatti, Belorusskaya Street, 14Marina E. Begun
Togliatti State University
Email: mariana.begun@gmail.com
student, technician of the Research Institute of Advanced Technologies
Россия, 445020, Russia, Togliatti, Belorusskaya Street, 14References
- Antoniac I., Popescu D., Zapciu A., Antoniac A., Miculescu F., Moldovan H. Magnesium filled polylactic acid (PLA) material for filament based 3D printing. Materials (Basel), 2019, vol. 12, no. 5, pp. 1–13. doi: 10.3390/ma12050719.
- Yang Youwen, He Chongxian, E Dianyu, Yang Wenjing, Qi Fangwei, Xie Deqiao, Shen Lida, Peng Shuping, Shuai Cijun. Mg bone implant: Features, developments and perspectives. Materials and Design, 2020, vol. 185, article number 108259. doi: 10.1016/j.matdes.2019.108259.
- Butler T.J., Jackson R.W., Robson J.Y., Owen R.J.T., Delves H.T., Sieniawska C.E., Rose J.D.G. In vivo degradation of tungsten embolisation coils. British Journal of Radiology, 2000, vol. 73, no. 870, pp. 601–603. doi: 10.1259/bjr.73.870.10911782.
- Peuster M., Fink C., Wohlsein P., Bruegmann M., Günther A., Kaese V., Niemeyer M., Haferkamp H., Schnakenburg C.V. Degradation of tungsten coils implanted into the subclavian artery of New Zealand white rabbits is not associated with local or systemic toxicity. Biomaterials, 2003, vol. 24, no. 3, pp. 393–399. doi: 10.1016/S0142-9612(02)00352-6.
- Zheng Y.F., Gu X.N., Witte F. Biodegradable metals. Materials Science and Engineering: R: Reports, 2014, vol. 77, pp. 1–34. doi: 10.1016/j.mser.2014.01.001.
- Song G.-L. Corrosion electrochemistry of magnesium (Mg) and its alloys. Corrosion of Magnesium Alloys. Sawston, Woodhead Publ., 2011, pp. 3–65. doi: 10.1533/9780857091413.1.3.
- Esmaily M., Svensson J.E., Fajardo S., Birbilis N., Frankel G.S., Virtanen S., Arrabal R., Thomas S., Johansson L.G. Fundamentals and advances in magnesium alloy corrosion. Progress in Materials Science, 2017, vol. 89, pp. 92–193. doi: 10.1016/j.pmatsci.2017.04.011.
- Parfenov E.V., Kulyasova O.B., Mukaeva V.R., Mingo B., Farrakhov R.G., Cherneikina Y.V., Yerokhin A., Zheng Y.F., Valiev R.Z. Influence of ultra-fine grain structure on corrosion behaviour of biodegradable Mg-1Ca alloy. Corrosion Science, 2020, vol. 163, article number 108303. doi: 10.1016/j.corsci.2019.108303.
- Ma Yingzhong, Wang Dexin, Li Hongxiang, Yuan Fusong, Yang Changlin, Zhang Jishan. Microstructure, mechanical and corrosion properties of novel quaternary biodegradable extruded Mg-1Zn-0.2Ca-xAg alloys. Materials Research Express, 2020, vol. 7, no. 1, article number 015414. doi: 10.1088/2053-1591/ab6a52.
- Tian Li, Sheng Yifeng, Huang Le et al. An innovative Mg/Ti hybrid fixation system developed for fracture fixation and healing enhancement at load-bearing skeletal site. Biomaterials, 2018, vol. 180, pp. 173–183. doi: 10.1016/j.biomaterials.2018.07.018.
- Myagkikh P.N., Merson E.D., Poluyanov V.A., Merson D.L., Begun M.E. On the compatibility of surgical implants of bioresorbable magnesium alloys with medical devices of titanium alloys. Frontier Materials & Technologies, 2022, no. 3-1, pp. 106–114. doi: 10.18323/2782-4039-2022-3-1-106-114.
- Merson D.L., Brilevsky A.I., Myagkikh P.N., Markushev M.V., Vinogradov A. Effect of deformation processing of the dilute Mg–1Zn–0.2Ca alloy on the mechanical properties and corrosion rate in a simulated body fluid. Letters on Materials, 2020, vol. 10, no. 2, pp. 217–222. doi: 10.22226/2410-3535-2020-2-217-222.
- Myagkikh P.N., Merson E.D., Poluyanov V.A., Merson D.L. Structure effect on the kinetics and staging of the corrosion process of biodegradable ZX10 and WZ31 magnesium alloys. Frontier Materials & Technologies, 2022, no. 2, pp. 63–73. doi: 10.18323/2782-4039-2022-2-63-73.
- Zheng Jie, Chen Zhe, Yan Zhaoming, Zhang Zhimin, Wang Qiang, Xue Yong. Preparation of ultra-high strength Mg–Gd–Y–Zn–Zr alloy by pre-ageing treatment prior to extrusion. Journal of Alloys and Compounds, 2022, vol. 894, article number 162490. doi: 10.1016/j.jallcom.2021.162490.
- Schäublin R.E., Becker M., Cihova M., Gerstl S.S.A., Deiana D., Hébert C., Pogatscher S., Uggowitzer P.J., Löffler J.F. Precipitation in lean Mg–Zn–Ca alloys. Acta Materialia, 2022, vol. 239, article number 118223. doi: 10.1016/j.actamat.2022.118223.
- Martynenko N., Anisimova N., Kiselevskiy M. et al. Structure, mechanical characteristics, biodegradation, and in vitro cytotoxicity of magnesium alloy ZX11 processed by rotary swaging. Journal of Magnesium and Alloys, 2020, vol. 8, no. 4, pp. 1038–1046. doi: 10.1016/j.jma.2020.08.008.
- Liu Shimeng, Wei Ziqi, Liu Zheng, Mao Pingli, Wang Feng, Wang Zhi, Zhou Le, Yin Xiunan. Effect of Zn content on hot tearing susceptibility of LPSO enhanced Mg–Znx–Y2–Zr0.06 alloys with different initial mold temperatures. Journal of Alloys and Compounds, 2022, vol. 904, article number 163963. doi: 10.1016/j.jallcom.2022.163963.
- Li C.Q., Xu D.K., Zeng Z.R., Wang B.J., Sheng L.Y., Chen X.B., Han E.H. Effect of volume fraction of LPSO phases on corrosion and mechanical properties of Mg–Zn–Y alloys. Materials and Design, 2017, vol. 121, pp. 430–441. doi: 10.1016/j.matdes.2017.02.078.
- Zong Ximei, Zhang Jinshan, Liu Wei, Zhang Yatong, You Zhiyong, Xu Chunxiang. Corrosion Behaviors of Long-Period Stacking Ordered Structure in Mg Alloys Used in Biomaterials: A Review. Advanced Engineering Materials, 2018, vol. 20, no. 7, pp. 1–26. doi: 10.1002/adem.201800017.
- Azzeddine H., Hanna A., Dakhouche A. Exploring the Corrosion Performance of AZ31 Magnesium Alloy under Acidic and Alkaline Conditions. Physics of Metals and Metallography, 2024, pp. 1–8. doi: 10.1134/S0031918X24600258.
- Myagkikh P.N., Merson E.D., Poluyanov V.A., Merson D.L. The dependence of the biodegradable ZX10 alloy corrosion process on the structural factors and local pH level. Frontier Materials & Technologies, 2023, no. 2, pp. 59–76. doi: 10.18323/2782-4039-2023-2-64-3.