Changes in the structure, mechanical and corrosion properties of the Mg–Zn–Zr system alloy subjected to equal channel angular pressing
- Authors: Aksenov D.A.1,2, Fakhretdinova E.I.1,2, Asfandiyarov R.N.1,2, Raab A.G.2, Sharipov A.E.2, Shishkunova M.A.2, Sementeeva Y.R.2
-
Affiliations:
- Institute of Physics of Molecules and Crystals of Ufa Federal Research Center of RAS
- Ufa University of Science and Technology
- Issue: No 1 (2024)
- Pages: 9-17
- Section: Articles
- URL: https://vektornaukitech.ru/jour/article/view/903
- DOI: https://doi.org/10.18323/2782-4039-2024-1-67-1
- ID: 903
Cite item
Abstract
Magnesium alloys are considered promising materials for the production of bioresorbable implants. Their main disadvantages are low strength and corrosion resistance in biological environment. In the work, the authors studied the effect of severe plastic deformation using the equal channel angular pressing (ECAP) method on the structure, mechanical properties, and corrosion resistance of the Mg–8.6Zn–1.2Zr magnesium alloy. It was identified that one ECAP cycle at 400 °C leads to a substantial hardening of the Mg–8.6Zn–1.2Zr alloy by ~10 %, up to 330 MPa. Structural studies showed that dynamic recrystallisation plays a significant role in the structure transformation. ECAP leads to the formation of a bimodal structure with large deformed grains with an average transverse size of 20±4 µm and recrystallised grains with an average transverse size of 6±2 µm. It was found that with a decrease in the strain temperature up to 250 °С, the process of deformation-induced decay of the supersaturated solid solution takes place. Electrical conductivity of a sample after ECAP at 400 °C amounted 29±2 % according to the International Annealed Copper Standard (IACS), while second ECAP cycles lead to an increase in the electrical conductivity up to 32±2 % IACS. Using the electrochemical corrosion method, the authors found that one ECAP cycle at 400 °C leads to a slight decrease in the corrosion resistance of the alloy under study compared to the initial state. The study showed that the corrosion current increases from 24 to 32 µA/cm2, while the subsequent ECAP cycle at 250 °С increases the corrosion current more than twice (up to 57 µA/cm2).
About the authors
Denis A. Aksenov
Institute of Physics of Molecules and Crystals of Ufa Federal Research Center of RAS;Ufa University of Science and Technology
Author for correspondence.
Email: aksyonovda@mail.ru
ORCID iD: 0000-0002-2652-2646
junior researcher
Russian Federation, 450054, Russia, Ufa, Prospekt Oktyabrya, 71; 450076, Russia, Ufa, Zaki Validi Street, 32Elvira I. Fakhretdinova
Institute of Physics of Molecules and Crystals of Ufa Federal Research Center of RAS;Ufa University of Science and Technology
Email: yelka89@mail.ru
PhD (Engineering), researcher
Russian Federation, 450054, Russia, Ufa, Prospekt Oktyabrya, 71; 450076, Russia, Ufa, Zaki Validi Street, 32Rashid N. Asfandiyarov
Institute of Physics of Molecules and Crystals of Ufa Federal Research Center of RAS;Ufa University of Science and Technology
Email: a.r.n@list.ru
ORCID iD: 0000-0002-5522-4314
PhD (Engineering), researcher
Russian Federation, 450054, Russia, Ufa, Prospekt Oktyabrya, 71; 450076, Russia, Ufa, Zaki Validi Street, 32Arseniy G. Raab
Ufa University of Science and Technology
Email: agraab@mail.ru
ORCID iD: 0000-0003-1993-413X
PhD (Engineering), researcher
Russian Federation, 450076, Russia, Ufa, Zaki Validi Street, 32Arseniy E. Sharipov
Ufa University of Science and Technology
Email: arsenyarseny36728@gmail.com
graduate student
Russian Federation, 450076, Russia, Ufa, Zaki Validi Street, 32Mariya A. Shishkunova
Ufa University of Science and Technology
Email: shishkunomashaa@gmail.com
postgraduate student
Russian Federation, 450076, Russia, Ufa, Zaki Validi Street, 32Yuliya R. Sementeeva
Ufa University of Science and Technology
Email: yu.nuriewa@yandex.ru
graduate student
Russian Federation, 450076, Russia, Ufa, Zaki Validi Street, 32References
- Li N., Zheng Y. Novel Magnesium Alloys Developed for Biomedical Application: A Review. Journal of Materials Science and Technology, 2013, vol. 29, no. 6, pp. 489–502. doi: 10.1016/j.jmst.2013.02.005.
- Chen Y., Xu Zhigang, Smith C., Sankar J. Recent advances on the development of magnesium alloys for biodegradable implants. Acta Biomaterialia, 2014, vol. 10, no. 11, pp. 4561–4573. doi: 10.1016/j.actbio.2014.07.005.
- Gu X.-N., Zheng Y.-F. A review on magnesium alloys as biodegradable materials. Frontiers of Materials Science in China, 2010, vol. 4, pp. 111–115. doi: 10.1007/s11706-010-0024-1.
- Saris N.-E.L., Mervaala E., Karppanen H., Khawaja J.A., Lewenstam A. Magnesium: An update on physiological, clinical and analytical aspects. Clinica Chimica Acta, 2000, vol. 294, no. 1-2, pp. 1–26. doi: 10.1016/S0009-8981(99)00258-2.
- Yin D., Zhang E., Zeng S. Effect of Zn on mechanical property and corrosion property of extruded Mg–Zn–Mn alloy. Transactions of Nonferrous Metals Society of China, 2008, vol. 18, no. 4, pp. 763–768. doi: 10.1016/S1003-6326(08)60131-4.
- Cai S., Lei T., Li N., Feng F. Effects of Zn on microstructure, mechanical properties and corrosion behavior of Mg–Zn alloys. Materials Science and Engineering: C, 2012, vol. 32, no. 8, pp. 2570–2577. doi: 10.1016/j.msec.2012.07.042.
- Zhao T., Hu Y., Pan F., He B., Guan M., Yuan Y., Tang A. Effect of Zn Content on the Microstructure and Mechanical Properties of Mg–Al–Sn–Mn Alloys. Materials, 2019, vol. 12, no. 19, article number 3102. doi: 10.3390/ma12193102.
- Bohlen J., Kurz G., Yi S., Letzig D. Rolling of magnesium alloys. Advances in Wrought Magnesium Alloys. Sawston, Woodhead Publishing Limited, 2012, pp. 346–375.
- Xin R., Li B., Li L., Liu Q. Influence of texture on corrosion rate of AZ31 Mg alloy in 3.5wt.% NaCl. Materials & Design, 2011, vol. 32, no. 8-9, pp. 4548–4552. doi: 10.1016/j.matdes.2011.04.031.
- Zheng F., Chen H., Zhang Y., Wang W., Nie H. Microstructure evolution and corrosion resistance of AZ31 magnesium alloy tube by stagger spinning. International Journal of Minerals, Metallurgy and Materials, 2022, vol. 29, pp. 1361–1372. doi: 10.1007/s12613-021-2396-x.
- Sun J., Zhao W., Yan P., Chen K., Jiao L., Qiu T., Wang X. Effect of Corrosive Medium and Surface Defect-Energy on Corrosion Behavior of Rolled ZK61M Alloy. Materials, 2022, vol. 15, no. 12, article number 4091. doi: 10.3390/ma15124091.
- Li W., Liu X., Zheng Y. et al. In vitro and in vivo studies on ultrafine-grained biodegradable pure Mg, Mg–Ca alloy and Mg–Sr alloy processed by high-pressure torsion. Biomaterials Science, 2020, no. 18, pp. 5071–5078. doi: 10.1039/D0BM00805B.
- Medeiros M.P., Carvalho A.P., Isaac A., Afonso C.R.M., Janeček M., Minárik P., Celis M.M., Figueiredo R.B. Using high pressure torsion to process magnesium alloys for biological applications. Journal of Materials Research and Technology, 2023, vol. 22, pp. 3075–3084. doi: 10.1016/j.jmrt.2022.12.127.
- Yan Z., Zhu J., Zhang Z., Wang Q., Xue Y. The microstructural, textural, and mechanical effects of high-pressure torsion processing on Mg alloys: A review. Frontiers in Materials, 2022, vol. 9, article number 964992. doi: 10.3389/fmats.2022.964992.
- Merson D., Brilevsky A., Myagkikh P., Tarkova A., Prokhorikhin A., Kretov E., Frolova T., Vinogradov A. The Functional Properties of Mg–Zn–X Biodegradable Magnesium Alloys. Materials, 2020, vol. 13, no. 3, article number 544. doi: 10.3390/ma13030544.
- Yin D.L., Cui H.L., Qiao J., Zhang J.F. Enhancement of mechanical properties in a Mg–Zn–Zr alloy by equal channel angular pressing at warm temperature. Materials Research Innovations, 2015, vol. 19, no. 9, pp. 9–28. doi: 10.1179/1432891715Z.0000000001912.
- Vinogradov A., Vasilev E., Kopylov V.I., Linderov M., Brilevesky A., Merson D. High Performance Fine-Grained Biodegradable Mg–Zn–Ca Alloys Processed by Severe Plastic Deformation. Metals, 2019, vol. 9, no. 2, article number 186. doi: 10.3390/met9020186.
- Jahadi R., Sedighi M., Jahed H. ECAP effect on the micro-structure and mechanical properties of AM30 magnesium alloy. Materials Science and Engineering: A, 2014, vol. 593, pp. 178–184. doi: 10.1016/j.msea.2013.11.042.
- Straumal B., Martynenko N., Temralieva D. et al. The Effect of Equal-Channel Angular Pressing on Microstructure, Mechanical Properties, and Biodegradation Behavior of Magnesium Alloyed with Silver and Gadolinium. Crystals, 2020, vol. 10, no. 10, article number 918. doi: 10.3390/cryst10100918.
- Gopi K.R., Shivananda Nayaka H. Microstructure and mechanical properties of magnesium alloy processed by equal channel angular pressing (ECAP). Materials Today: Proceedings, 2017, vol. 4, no. 9, pp. 10288–10292. doi: 10.1016/j.matpr.2017.06.366.
- Chen M., Ma C., Liu Q., Cheng M., Wang H., Hu X. Plastic Deformation Mechanism of High Strength and Toughness ZK61 Magnesium Alloy Plate by Multipass Horizontal Continuous Rolling. Materials, 2023, vol. 16, no. 3, article number 1320. doi: 10.3390/ma16031320.
- Alawad M.O., Alateyah A.I., El-Garaihy W.H., BaQais A., Elkatatny S., Kouta H., Kamel M., El-Sanabary S. Optimizing the ECAP Parameters of Biodegradable Mg–Zn–Zr Alloy Based on Experimental, Mathematical Empirical, and Response Surface Methodology. Materials, 2022, vol. 15, no. 21, article number 7719. doi: 10.3390/ma15217719.
- Choi H.Y., Kim W.J. Effect of thermal treatment on the bio-corrosion and mechanical properties of ultrafine-grained ZK60 magnesium alloy. Journal of the Mechanical Behavior of Biomedical Materials, 2015, vol. 51, pp. 291–301. doi: 10.1016/j.jmbbm.2015.07.019.
- Scully J.R. Polarization resistance method for determination of instantaneous corrosion rates. Corrosion, 2000, vol. 56, no. 2, pp. 199–218. doi: 10.5006/1.3280536.
- Aung N.N., Zhou W. Effect of grain size and twins on corrosion behaviour of AZ31B magnesium alloy. Corrosion Science, 2010, vol. 52, no. 2, pp. 589–594. doi: 10.1016/j.corsci.2009.10.018.
- Zeng R., Kainer K.U., Blawert C., Dietzel W. Corrosion of an extruded magnesium alloy ZK60 component – The role of microstructural features. Journal of Alloys and Compounds, 2011, vol. 509, no. 13, pp. 4462–4469. doi: 10.1016/j.jallcom.2011.01.116.
- Shang B., Lei L., Wang X., He P., Yuan X., Dai W., Li J., Jiang Y., Sun Y. Effects of grain boundary characteristics changing with cold rolling deformation on intergranular corrosion resistance of 443 ultra-pure ferritic stainless steel. Corrosion Communications, 2022, vol. 8, pp. 27–39. doi: 10.1016/j.corcom.2022.07.002.
- Yan J., Qin Z., Yan K. Mechanical properties and microstructure evolution of Mg–6wt%Zn alloy during equal-channel angular pressing. Metals, 2018, vol. 8, no. 10, article number 841. doi: 10.3390/met8100841.
- Dumitru F.-D., Higuera-Cobos O.F., Cabrera J.M. ZK60 alloy processed by ECAP: Microstructural, physical and mechanical characterization. Materials Science and Engineering: A, 2014, vol. 594, pp. 32–39. doi: 10.1016/j.msea.2013.11.050.