Structure and micromechanical properties of SHS composites with a copper matrix: peculiarities of formation
- Authors: Pugacheva N.B.1, Bykova T.M.1, Senaeva E.I.1
-
Affiliations:
- Institute of Engineering Science of the Ural Branch of RAS, Yekaterinburg
- Issue: No 4 (2023)
- Pages: 99-108
- Section: Articles
- URL: https://vektornaukitech.ru/jour/article/view/900
- DOI: https://doi.org/10.18323/2782-4039-2023-4-66-9
- ID: 900
Cite item
Abstract
Self-propagating high-temperature synthesis (SHS) is one of the promising methods for producing strong and wear-resistant composites. The use of copper as a matrix due to the unique combination of electrical and thermal conductivity is of particular interest. Monolithic SHS composites of the Cu–Ti–C–B and Cu–Ti–C systems are currently little studied. The information on the phase composition of such composites is contradictory, and data on micromechanical properties is practically absent. The paper presents the results of a comparative analysis of the structure and micromechanical properties of composites of the Cu–Ti–C and Cu–Ti–C–B systems. It is found that the matrix of both composites is a copper-based solid solution supersaturated with titanium, in which nanosized Cu4Ti intermetallic compound particles precipitate upon cooling. TiC particles (Cu–Ti–C composite) and TiC and TiB2 particles (Cu–Ti–C–B composite) are the strengthening phases resulting from SHS. In the Cu–Ti–C–B composite, the original particles of unreacted B4C boron carbide were preserved, the microhardness of which was 3680 HV 0.1. The most ductile structural constituent in the Cu–Ti–B system composite is the Cu+Cu4Ti mechanical mixture, due to which further plastic deformation is possible to obtain parts of a given shape. During the study of micromechanical properties, the maximum strength indicators of HIT, HV, We, Re, HIT/E* were recorded in the Cu–Ti–C–B system composite, which allows expecting high wear resistance of products made of it.
About the authors
Nataliya Borisovna Pugacheva
Institute of Engineering Science of the Ural Branch of RAS, Yekaterinburg
Email: nat@imach.uran.ru
ORCID iD: 0000-0001-8015-8120
Doctor of Sciences (Engineering), Associate Professor, chief researcher
РоссияTatyana Mikhailovna Bykova
Institute of Engineering Science of the Ural Branch of RAS, Yekaterinburg
Author for correspondence.
Email: tatiana_8801@mail.ru
ORCID iD: 0000-0002-8888-6410
PhD (Engineering), senior researcher
РоссияEkaterina Igorevna Senaeva
Institute of Engineering Science of the Ural Branch of RAS, Yekaterinburg
Email: nata5-4@yandex.ru
ORCID iD: 0000-0001-8625-2310
junior researcher
РоссияReferences
- Levashov E.A., Rogachev A.S., Kurbatkina V.V., Maksimov Yu.M., Yukhvid V.I. Perspektivnye materialy i tekhnologii samorasprostranyayushchegosya vysokotemperaturnogo sinteza [Promissory Materials and Processes of Self-Propagating High-Temperature Synthesis]. Moscow, MISiS Publ., 2011. 378 p.
- Rogachev A.S., Mukasyan A.S. Goreniya dlya sinteza materialov [Combustions for synthesizing materials]. Moscow, FIZMATLIT Publ., 2012. 400 p.
- Amosov A.P., Borovinskaya I.P., Merzhanov A.G. Poroshkovaya tekhnologiya samorasprostranyayushchegosya vysokotemperaturnogo sinteza materialov [Powder technology of self-propagating high-temperature synthesis of materials]. Moscow, Mashinostroenie-1 Publ., 2007. 567 p.
- Merzhanov A.G. Self-propagating high-temperature synthesis. Fizicheskaya khimiya. Sovremennye problemy. Moscow, Khimiya Publ., 1983, pp. 6–44.
- Latukhin E.I., Umerov E.R., Luts A.R. Self-propagating high-temperature synthesis of porous titanium carbide blanks for subsequent infiltration by melts. Zagotovitelnye proizvodstva v mashinostroenii, 2021, vol. 19, no. 7, pp. 322–330. doi: 10.36652/1684-1107-2021-19-7-322-330.
- Korosteleva E.N., Korzhova V.V. Structure and phase composition of (TiB)-Ti metal matrix composites obtained by SHS and vacuum sintering. Russian Physics Journal, 2020, vol. 63, no. 7, pp. 1195–1201. doi: 10.1007/s11182-020-02159-4.
- Sitnikov A.A., Sobachkin A.V., Markov A.M. Peculiarities in formation of different functional coatings of SHS-mechano-composites using technologies of gas-detonation sputtering. Naukoemkie tekhnologii v mashinostroenii, 2020, no. 2, pp. 22–28. doi: 10.30987/2223-4608-2020-2020-2-22-28.
- Fedotov A.F., Amosov A.P., Radchenko V.P. Modelirovanie protsessa pressovaniya poroshkovykh materialov v usloviyakh samorasprostranyayushchegosya vysokotemperaturnogo sinteza [Modeling the Powder Material Compaction in Conditions of the Self-Propagating High-Temperature Synthesis]. Moscow, Mashinostroenie-1 Publ., 2005. 281 p.
- Kovalev D.Yu., Bolotskaya A.V., Mikheev M.V. Self-propagating high-temperature synthesis in the Ti–B–Fe system with AlN additions. Inorganic Materials, 2022, vol. 58, no. 9, pp. 922–930. EDN: UTUZNA.
- Krivolutskiy K.S., Amosov A.P., Samboruk A.R. Self-propagating high-temperature sinthesis ultradispersed and nanosized the powder composition TiC–SiC and TiC–NbC. Vestnik Samarskogo gosudarstvennogo tekhnicheskogo universiteta. Seriya: Tekhnicheskie nauki, 2016, no. 3, pp. 136–143. EDN: XVSVKB.
- Shchukin A.S., Sytschev A.E. Peculiarities of a NiAl/Mo transition zone formed during self-propagating high-temperature synthesis. The Physics of Metals and Metallography, 2019, vol. 120, no. 9, pp. 848–852. doi: 10.1134/S0031918X19090138.
- Lazarev P.A., Busurina M.L., Gryadunov A.N., Sytschev A.E., Boyarchenko O.D., Karpov A.V. structure and phase formation of a Ti–Al–Si based alloy prepared by self-propagating high-temperature synthesis compaction. Inorganic Materials, 2022, vol. 58, no. 9, pp. 1005–1010. EDN: QPVISC.
- Lazarev P.A., Busurina M.L., Sychev A.E. Self-propagating high-temperature synthesis in Ti–Al–Mn. Fizika goreniya i vzryva, 2023, vol. 59, no. 1, pp. 85–91. doi: 10.15372/FGV20230109.
- Volkov A.Y., Patrakov E.I., Volkova E.G., Komkova D.A., Kalonov A.A., Glukhov A.V., Antonov B.D. Abnormally high strength and low electrical resistivity of the deformed Cu/Mg-composite with a big number of Mg-filaments. Materials & Design, 2020, vol. 185, article number 108276. doi: 10.1016/j.matdes.2019.108276.
- Kim Ji Soon, Dudina D.V., Kim Jin Chun, Kwon Soon Young, Park Jin Ju, Rhee Chang Kyu. Properties of Cu-based nanocomposites produced by mechanically – activated self – propagating high – temperature synthesis and spark – plasma sintering. Journal of Nanoscience and Nanotechnology, 2010, vol. 10, no. 1, pp. 252–257. doi: 10.1166/jnn.2010.1523.
- Oanh Nguyen Thi Hoang, Viet Nguyen-Hoang, Kim Ji Soon, Dudina D.V. Structural Investigation of TiC–Cu Nanocomposites Prepared by Ball Milling and Spark Plasma Sintering. Metals, 2017, vol. 7, no. 4, article number 123. doi: 10.3390/met7040123.
- Volkov A.Yu., Kalonov A.A., Komkova D.A. Effect of annealing on the structure, mechanical and electrical properties of Cu/Mg-composite wires. Materials Characterization, 2022, vol. 183, article number 111606. doi: 10.1016/j.matchar.2021.111606.
- Tsikarev V.G., Filippenkov A.A., Filippov M.A., Alabushev A.V., Sharapova V.A. Obtaining Ti–Cu–C system composite materials by SHS process. Izvestiya vysshikh uchebnykh zavedeniy. Poroshkovaya metallurgiya i funktsionalnye pokrytiya, 2021, vol. 15, no. 4, pp. 4–11. doi: 10.17073/1997-308X-2021-4-11.
- Pugacheva N.B., Bykova T.M., Senaeva E.I., Nikolin Y.V. Structure and properties of a SHS Cu–Ti–C–B composite. The Physics of Metals and Metallography, 2022, vol. 123, no. 1, pp. 43–49. doi: 10.1134/S0031918X22010100.
- Pugacheva N., Kryuchkov D., Bykova T., Vichuzhanin D. Studying the Plastic Deformation of Cu–Ti–C–B Composites in a Favorable Stress State. Materials, 2023, vol. 16, no. 8, article number 320. doi: 10.3390/ma16083204.
- Pugacheva N.B., Bykova T.M., Senaeva E.I., Goruleva L.S. Thermophysical properties of a Cu–Ti–C–B SHS composite. Diagnostics, Resource and Mechanics of Materials and Structures, 2023, no. 3, pp. 50–65. doi: 10.17804/2410-9908.2023.3.050-065.
- Nikolin B.V., Matevosyan M.B., Kochugov S.P., Pugacheva N.B. Sposob izgotovleniya mnogosloynoy iznosostoykoy plastiny [Method of manufacturing a multilayer wear-resistant plate], patent RF na izobretenie no. 2680489, 2019. 11 p.