The influence of addition of ZrO2 nanoparticles to the electrolyte on the structure and anticorrosion properties of oxide layers formed by plasma electrolytic oxidation on the Mg97Y2Zn1 alloy

Cover Page

Cite item

Abstract

Magnesium alloys with a strengthening long-period stacking ordered structure (LPSO-phase) offer outstanding mechanical properties, but their low corrosion resistance necessitates additional surface protection. The work investigates the influence of adding ZrO2 nanoparticles at a concentration of 1–4 g/l to the electrolyte on the thickness, structure, composition, wettability, and anticorrosion properties of oxide layers formed during plasma electrolytic oxidation (PEO) of the Mg97Y2Zn1 alloy with the LPSO-phase. It was found that during PEO, under the influence of an electric field, ZrO2 nanoparticles penetrate into the forming oxide layer and reduce its porosity. The study revealed a decrease in the quantity and size of pores near the barrier layer in places where the alloy LPSO-phase comes out to the interface with the oxide layer. Low concentrations of ZrO2 nanoparticles (1–2 g/l) reduce the corrosion rate of the alloy up to two times compared to the base case. The minimum corrosion current density icorr≈14 nA/cm2 and the highest polarization resistance Rp≈2.6 MΩ·cm2 are found in the sample formed in an electrolyte with the addition of 1 g/l of ZrO2 nanoparticles. Calculation of the barrier zone parameters of oxide layers showed that an increase in the ZrO2 concentration in the electrolyte leads to an increase in the barrier layer thickness and in its specific conductivity, which negatively affects the corrosion resistance of the formed oxide layers – the barrier zone resistance of the layer obtained by adding 4 g/l of ZrO2, drops by ~20 % compared to the base case (up to ~1 MΩ·cm2).

About the authors

Alisa Olegovna Polunina

Togliatti State University, Togliatti

Author for correspondence.
Email: a.cheretaeva@tltsu.ru
ORCID iD: 0000-0002-3952-9556

researcher of the Research Institute of Advanced Technologies

Russian Federation

Anton Viktorovich Polunin

Togliatti State University, Togliatti

Email: Anpol86@gmail.com
ORCID iD: 0000-0001-8484-2456

PhD (Engineering), leading researcher of the Research Institute of Advanced Technologies

Russian Federation

Mikhail Mikhailovich Krishtal

Togliatti State University, Togliatti

Email: krishtal@tltsu.ru
ORCID iD: 0000-0001-7189-0002

Doctor of Sciences (Physics and Mathematics), Professor, chief researcher of the Research Institute of Advanced Technologies

Russian Federation

References

  1. Landkof B. Magnesium Applications in Aerospace and Electronic Industries. Magnesium Alloys and their Applications, 2006, pp. 168–172. doi: 10.1002/3527607552.CH28.
  2. Ur Rehman Z., Choi Dongjin. Investigation of ZrO2 nanoparticles concentration and processing time effect on the localized PEO coatings formed on AZ91 alloy. Journal of Magnesium and Alloys, 2019, vol. 7, no. 4, pp. 555–565. doi: 10.1016/J.JMA.2019.10.001.
  3. Fattah-alhosseini A., Chaharmahali R., Babaei K., Nouri M., Keshavarz M.K., Kaseem M. A review of effective strides in amelioration of the biocompatibility of PEO coatings on Mg alloys. Journal of Magnesium and Alloys, 2022, vol. 10, no. 9, pp. 2354–2383. doi: 10.1016/J.JMA.2022.09.002.
  4. Sedelnikova M.B., Kashin A.D., Uvarkin P.V., Tolmachev A.I., Sharkeev Y.P., Ugodchikova A.V., Luginin N.A., Bakina O.V. Porous biocoatings based on diatomite with incorporated ZrO2 particles for biodegradable magnesium implants. Journal of Functional Biomaterials, 2023, vol. 14, no. 5, article number 241. doi: 10.3390/JFB14050241.
  5. Xu Daokui, Han En-hau, Xu Yongbo. Effect of long-period stacking ordered phase on microstructure, mechanical property and corrosion resistance of Mg alloys: A review. Progress in Natural Science: Materials International, 2016, vol. 26, no. 2, pp. 117–128. doi: 10.1016/J.PNSC.2016.03.006.
  6. Wang Guoxin, Mao Pingli, Wang Zhi, Zhou Le, Wang Feng, Liu Zheng. High strain rates deformation behavior of an as-extruded Mg-2.5Zn-4Y magnesium alloy containing LPSO phase at high temperatures. Journal of Materials Research and Technology, 2022, vol. 21, pp. 40–53. doi: 10.1016/J.JMRT.2022.08.131.
  7. Qian Yafeng, Zhao Yanhui, Dong Xiaorui, Yu Wei, Feng Jianhang, Yu Hui. Microstructure, mechanical properties and fire resistance of high strength Mg-Gd-Y-Zr alloys. Metals, 2022, vol. 12, no. 9, article number 1456. doi: 10.3390/MET12091456.
  8. Li C.Q., Xu D.K., Zeng Z.R., Wang B.J., Sheng L.Y., Chen X.B., Han E.H. Effect of volume fraction of LPSO phases on corrosion and mechanical properties of Mg-Zn-Y alloys. Materials & Design, 2017, vol. 121, pp. 430–441. doi: 10.1016/j.matdes.2017.02.078.
  9. Cheretaeva A.O., Glukhov P.A., Shafeev M.R., Denisova A.G., Borgardt E.D., Polunin A.V., Katsman A.V., Krishtal M.M. Improvement of protective oxide layers formed by high-frequency plasma electrolytic oxidation on Mg-RE alloy with LPSO-phase. Chimica Techno Acta, 2023, vol. 10, no. 2, article number 202310212. doi: 10.15826/chimtech.2023.10.2.12.
  10. Simchen F., Sieber M., Kopp A., Lampke T. Introduction to plasma electrolytic oxidation – an overview of the process and applications. Coatings, 2020, vol. 10, no. 7, article number 628. doi: 10.3390/COATINGS10070628.
  11. Lu Xiaopeng, Blawert C., Huang Yuanding, Ovri H., Zheludkevich M.L., Kainer K.U. Plasma electrolytic oxidation coatings on Mg alloy with addition of SiO2 particles. Electrochimica Acta, 2016, vol. 187, pp. 20–33. doi: 10.1016/J.ELECTACTA.2015.11.033.
  12. Mashtalyar D.V., Imshinetskiy I.M., Nadaraia K.V. et al. Effect of TiO2 nanoparticles on the photocatalytic properties of PEO coatings on Mg alloy. Journal of Magnesium and Alloys, 2023, vol. 11, no. 2, pp. 735–752. doi: 10.1016/J.JMA.2022.10.021.
  13. Bordbar-Khiabani A., Yarmand B., Mozafari M. Enhanced corrosion resistance and in-vitro biodegradation of plasma electrolytic oxidation coatings prepared on AZ91 Mg alloy using ZnO nanoparticles-incorporated electrolyte. Surface and Coatings Technology, 2019, vol. 360, pp. 153–171. doi: 10.1016/J.SURFCOAT.2019.01.002.
  14. Gnedenkov S.V., Sinebryukhov S.L., Mashtalyar D.V., Imshinetskiy I.M., Samokhin A.V., Tsvetkov Y.V. Fabrication of coatings on the surface of magnesium alloy by plasma electrolytic oxidation using ZrO2 and SiO2 Nanoparticles. Journal of Nanomaterials, 2015, vol. 2015, article number 154298. doi: 10.1155/2015/154298.
  15. Wu Jiahao, Wu Liang, Yao Wenhui, Chen Yanning, Chen Yonghua, Yuan Yuan, Wang Jingfeng, Atrens A., Pan Fusheng. Effect of electrolyte systems on plasma electrolytic oxidation coatings characteristics on LPSO Mg-Gd-Y-Zn alloy. Surface and Coatings Technology, 2023, vol. 454, article number 129192. doi: 10.1016/J.SURFCOAT.2022.129192.
  16. Mohedano M., Pérez P., Matykina E., Pillado B., Garcés G., Arrabal R. PEO coating with Ce-sealing for corrosion protection of LPSO Mg–Y–Zn alloy. Surface and Coatings Technology, 2020, vol. 383, article number 125253. doi: 10.1016/J.SURFCOAT.2019.125253.
  17. Liu Xiaohe, Liu Lei, Dong Shuai, Chen Xiao-Bo, Dong Jie. Towards dense corrosion-resistant plasma electrolytic oxidation coating on Mg-Gd-Y-Zr alloy by using ultra-high frequency pulse current. Surface and Coatings Technology, 2022, vol. 447, article number 128881. doi: 10.1016/J.SURFCOAT.2022.128881.
  18. Kang Min Lee, Ki Ryong Shin, Seung Namgung, Bongyoung Yoo, Dong Hyuk Shin. Electrochemical response of ZrO2-incorporated oxide layer on AZ91 Mg alloy processed by plasma electrolytic oxidation. Surface and Coatings Technology, 2011, vol. 205, no. 13-14, pp. 3779–3784. doi: 10.1016/J.SURFCOAT.2011.01.033.
  19. Kaseem M., Fatimah S., Nashrah N., Ko Y.G. Recent progress in surface modification of metals coated by plasma electrolytic oxidation: Principle, structure, and performance. Progress in Materials Science, 2021, vol. 117, article number 100735. doi: 10.1016/J.PMATSCI.2020.100735.
  20. Benfedda B., Hamadou L., Benbrahim N., Kadri A., Chainet E., Charlot F. Electrochemical Impedance Investigation of Anodic Alumina Barrier Layer. Journal of The Electrochemical Society, 2012, vol. 159, no. 8, pp. C372–C381. doi: 10.1149/2.068208JES.
  21. Krishtal M.M., Ryumkin M.Y. Inherited chemical inhomogeneity in oxide layers deposited by the method of microarc oxidizing on hypereutectic silumins. Metal Science and Heat Treatment, 2007, vol. 49, no. 3-4, pp. 111–117. doi: 10.1007/s11041-007-0021-x.
  22. Siqveland L.M., Skjæveland S.M. Derivations of the Young-Laplace equation. Capillarity, 2021, vol. 4, no. 2, pp. 23–30. doi: 10.46690/CAPI.2021.02.01.
  23. Dilimon V.S., Shibli S.M.A. A Review on the application-focused assessment of plasma electrolytic oxidation (PEO) coatings using electrochemical impedance spectroscopy. Advanced Engineering Materials, 2023, vol. 25, no. 12, article number 2201796. doi: 10.1002/ADEM.202201796.
  24. Lu Xiaopeng, Chen Yan, Blawert C., Li Yan, Zhang Tao, Wang Fuhui, Kainer K.U., Zheludkevich M. Influence of SiO2 particles on the corrosion and wear resistance of plasma electrolytic oxidation-coated AM50 Mg alloy. Coatings, 2018, vol. 8, no. 9, article number 306. doi: 10.3390/COATINGS8090306.
  25. Polunin A.V., Cheretaeva A.O., Borgardt E.D., Rastegaev I.A., Krishtal M.M., Katsman A.V., Yasnikov I.S. Improvement of oxide layers formed by plasma electrolytic oxidation on cast AlSi alloy by incorporating TiC nanoparticles. Surface and Coatings Technology, 2021, vol. 423, article number 127603. doi: 10.1016/J.SURFCOAT.2021.127603.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c)



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies