Electrically conductive nanocomposite bituminous binders containing carbon nanotubes and multilayer graphene

Abstract

In the modern literature, there are practically no data on the electrical characteristics of bituminous binders modified with carbon nanotubes and graphene nanoplates, while they are necessary for the design and development of innovative asphalt pavement compositions sensitive to the super-high-frequency microwave radiation. Contemporary bituminous binders are multi-component systems that may contain polymers, rubbers, synthetic or natural resins, inorganic salts, and even fragrances. As a result of application of modifying additives, bitumen acquires high performance characteristics. A special class of modifiers are micro- and nano-sized electrically conductive fibers and particles (steel wool, carbon fibers, carbon black, carbon nanotubes, graphene nanoplates), the use of which makes it possible to ensure the sensibility of bituminous binders to super-high-frequency microwave radiation and the implementation of the process of healing cracks in an asphalt pavement with its subsequent regeneration. As part of the study, the authors developed an original technique to produce bituminous binders modified with carbon nanotubes and multilayer graphene. Modified bituminous compositions in the concentration range from 0.2 to 6 and from 0.2 to 11 wt. % for multi-walled carbon nanotubes (MWCNT) and multilayer graphene nanoplates (MG), respectively were experimentally obtained. For the first time, the dependence of the specific volume electrical conductivity of bitumen-based nanocomposites on the concentration of nanostructured carbon filler (MWCNT and MG) was researched. The maximum values of electrical conductivity were 4.76×10−4 S/cm and 3.5×10−4 S/cm for nanocomposites containing 6 wt. % MWCNT and 11 wt. % MG, respectively. The study determined the filler volume fractions at the percolation threshold for nanocomposites containing MWCNT and MG. They amounted to 0.22 and 2.18, respectively. The formation of a percolation contour in nanocomposites containing MWCNT occurs at significantly lower filler concentrations compared to bituminous compositions containing MG.

About the authors

Dmitry V. Tarov

Tambov State Technical University, Tambov

Email: d_tarov@mail.ru
ORCID iD: 0000-0002-8067-9548

PhD (Engineering), leading researcher

Россия

Daniil A. Evlakhin

Tambov State Technical University, Tambov

Email: evlahin.daniil2002@yandex.ru

student

Россия

Andrey D. Zelenin

Tambov State Technical University, Tambov

Email: zeleandrey@yandex.ru
ORCID iD: 0000-0002-2399-9510

junior researcher

Россия

Roman A. Stolyarov

Tambov State Technical University, Tambov

Email: stolyarovra@mail.ru
ORCID iD: 0000-0001-8495-3316

PhD (Engineering), senior researcher

Россия

Viktor S. Yagubov

Tambov State Technical University, Tambov

Author for correspondence.
Email: vitya-y@mail.ru
ORCID iD: 0000-0003-4855-0530

PhD (Engineering), senior researcher

Россия

Nariman R. Memetov

Tambov State Technical University, Tambov

Email: memetov.nr@mail.tstu.ru
ORCID iD: 0000-0002-7449-5208

PhD (Engineering), leading researcher

Россия

Anastasiya E. Memetova Memetova

Tambov State Technical University, Tambov

Email: anastasia.90k@mail.ru
ORCID iD: 0000-0002-1036-7389

PhD (Engineering), assistant professor of Chair “Technology and Methods of Nanoproducts Manufacturing”

Россия

Nikolay A. Chapaksov

Tambov State Technical University, Tambov

Email: tchapaxov.nikolaj@yandex.ru
ORCID iD: 0000-0001-9076-9400

junior researcher of Chair “Nanotechnology Engineering”

Россия

Alena V. Gerasimova

Tambov State Technical University, Tambov

Email: alyona_gerasimova_92@mail.ru
ORCID iD: 0000-0003-1912-6642

PhD (Engineering), senior lecturer of Chair “Technology and Methods of Nanoproducts Manufacturing”

Россия

References

  1. Zhu J., Birgisson B., Kringos N. Polymer modification of bitumen: Advances and challenges. European Polymer Journal, 2014, vol. 54, pp. 18–38. doi: 10.1016/j.eurpolymj.2014.02.005.
  2. Presti D.L. Recycled Tyre Rubber Modified Bitumens for road asphalt mixtures: A literature review. Construction and Building Materials, 2013, vol. 49, pp. 863–881. doi: 10.1016/j.conbuildmat.2013.09.007.
  3. Gulisano F., Gallego J. Microwave heating of asphalt paving materials: Principles, current status and next steps. Construction and Building Materials, 2021, vol. 278, article number 121993. doi: 10.1016/j.conbuildmat.2020.121993.
  4. Crucho J., Picado-Santos L., Neves J., Capitão S. A Review of Nanomaterials’ Effecton Mechanical Performance and Aging of Asphalt Mixtures. Applied Sciences, 2019, vol. 9, no. 19, article number 3657. doi: 10.3390/app9183657.
  5. Wu Sh., Tahri О. State-of-art carbon and graphene family nanomaterials for asphalt modification. Road Materials and Pavement Design, 2019, vol. 22, no. 5, pp. 1–22. doi: 10.1080/14680629.2019.1642946.
  6. Latifi H., Hayati P. Evaluating the effects of the wet and simple processes for including carbon Nanotube modifier in hot mix asphalt. Construction and Building Materials, 2018, vol. 164, pp. 326–336. doi: 10.1016/j.conbuildmat.2017.12.237.
  7. Le J.L., Marasteanu M.O., Turos M. Mechanical and compaction properties of graphite nanoplatelet-modified asphalt binders and mixtures. Road Materials and Pavement Design, 2020, vol. 21, no. 5, pp. 1799–1814. doi: 10.1080/14680629.2019.1567376.
  8. Li C., Wu S., Chen Z., Tao G., Xiao Y. Improved microwave heating and healing properties of bitumen by using nanometer microwave-absorbers. Construction and Building Materials, 2018, vol. 189, pp. 757–767. doi: 10.1016/j.conbuildmat.2018.09.050.
  9. Gulisano F., Crucho J., Gallego J., Picado-Santos L. Microwave healing performance of asphalt mixture containing electric arc furnace (EAF) slag and graphene nanoplatelets (GNPs). Applied Sciences, 2020, vol. 10, no. 4, article number 1428. doi: 10.3390/app10041428.
  10. Xu S., García A., Su J.-F., Liu Q., Tabaković A., Schlangen E. Self-Healing Asphalt Review: From Idea to Practice. Advanced Materials Interfaces, 2018, vol. 5, article number 1800536. doi: 10.1002/admi.201800536.
  11. Stolyarov R.A., Yagubov V.S., Memetova A.E., Memetov N.R., Tkachev A.G., Chapaksov N.A. Electrically conductive nanocomposites based on chloroprene rubber, containing multi-walled carbon nanotubes Taunit and Taunit-M. Materialovedenie, 2022, no. 5, pp. 41–48. EDN: DNHSIL.
  12. Vovchenko L., Matzui L., Oliynyk V., Launets V., Mamunya Ye., Maruzhenko O. Nanocarbon/polyethylene composites with segregated conductive network for electromagnetic interference shielding. Molecular Crystals and Liquid Crystals, 2018, vol. 672, no. 1, pp. 186–198. doi: 10.1080/15421406.2018.1555349.
  13. Vovchenko L., Matzui L., Oliynyk V., Launetz V., Zagorodnii V., Lazarenko O. Chapter 2. Electrical and shielding properties of nanocarbon-epoxy composites. Conductive Materials and Composites. New York, Nova Science Publ., 2016, pp. 29–91.
  14. Memetov N.R., Gerasimova A.V., Stolyarov R.A., Tkachev A.G., Melezhik A.V., Chapaksov N.A., Osipkov A.S., Mikhalev P.A., Provatorov A.S. Composite Materials Based on Foam Polyurethane and Graphene Nanoplates Effectively Screening Electromagnetic Radiation. Advanced Materials and Technologies, 2020, no. 17, pp. 68–73. doi: 10.17277/amt.2020.01.pp.068-073.
  15. Blokhin A., Stolyarov R., Burmistrov I. et al. Increasing electrical conductivity of PMMA-MWCNT composites by gas phase iodination. Composites Science and Technology, 2021, vol. 214, article number 108972. doi: 10.1016/j.compscitech.2021.108972.
  16. Mamunya E.P., Davidenko V.V., Lebedev E.V. Percolation conductivity of polymer composites filled with dispersed conductive filler. Polymer composites, 1995, vol. 16, no. 4, pp. 319–324. doi: 10.1002/pc.750160409.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c)



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies