Electrically conductive nanocomposite bituminous binders containing carbon nanotubes and multilayer graphene
- Authors: Tarov D.V.1, Evlakhin D.A.1, Zelenin A.D.1, Stolyarov R.A.1, Yagubov V.S.1, Memetov N.R.1, Memetova A.E.1, Chapaksov N.A.1, Gerasimova A.V.1
-
Affiliations:
- Tambov State Technical University, Tambov
- Issue: No 2 (2023)
- Pages: 131-139
- Section: Articles
- URL: https://vektornaukitech.ru/jour/article/view/847
- DOI: https://doi.org/10.18323/2782-4039-2023-2-64-5
- ID: 847
Cite item
Abstract
In the modern literature, there are practically no data on the electrical characteristics of bituminous binders modified with carbon nanotubes and graphene nanoplates, while they are necessary for the design and development of innovative asphalt pavement compositions sensitive to the super-high-frequency microwave radiation. Contemporary bituminous binders are multi-component systems that may contain polymers, rubbers, synthetic or natural resins, inorganic salts, and even fragrances. As a result of application of modifying additives, bitumen acquires high performance characteristics. A special class of modifiers are micro- and nano-sized electrically conductive fibers and particles (steel wool, carbon fibers, carbon black, carbon nanotubes, graphene nanoplates), the use of which makes it possible to ensure the sensibility of bituminous binders to super-high-frequency microwave radiation and the implementation of the process of healing cracks in an asphalt pavement with its subsequent regeneration. As part of the study, the authors developed an original technique to produce bituminous binders modified with carbon nanotubes and multilayer graphene. Modified bituminous compositions in the concentration range from 0.2 to 6 and from 0.2 to 11 wt. % for multi-walled carbon nanotubes (MWCNT) and multilayer graphene nanoplates (MG), respectively were experimentally obtained. For the first time, the dependence of the specific volume electrical conductivity of bitumen-based nanocomposites on the concentration of nanostructured carbon filler (MWCNT and MG) was researched. The maximum values of electrical conductivity were 4.76×10−4 S/cm and 3.5×10−4 S/cm for nanocomposites containing 6 wt. % MWCNT and 11 wt. % MG, respectively. The study determined the filler volume fractions at the percolation threshold for nanocomposites containing MWCNT and MG. They amounted to 0.22 and 2.18, respectively. The formation of a percolation contour in nanocomposites containing MWCNT occurs at significantly lower filler concentrations compared to bituminous compositions containing MG.
About the authors
Dmitry V. Tarov
Tambov State Technical University, Tambov
Email: d_tarov@mail.ru
ORCID iD: 0000-0002-8067-9548
PhD (Engineering), leading researcher
РоссияDaniil A. Evlakhin
Tambov State Technical University, Tambov
Email: evlahin.daniil2002@yandex.ru
student
РоссияAndrey D. Zelenin
Tambov State Technical University, Tambov
Email: zeleandrey@yandex.ru
ORCID iD: 0000-0002-2399-9510
junior researcher
РоссияRoman A. Stolyarov
Tambov State Technical University, Tambov
Email: stolyarovra@mail.ru
ORCID iD: 0000-0001-8495-3316
PhD (Engineering), senior researcher
РоссияViktor S. Yagubov
Tambov State Technical University, Tambov
Author for correspondence.
Email: vitya-y@mail.ru
ORCID iD: 0000-0003-4855-0530
PhD (Engineering), senior researcher
РоссияNariman R. Memetov
Tambov State Technical University, Tambov
Email: memetov.nr@mail.tstu.ru
ORCID iD: 0000-0002-7449-5208
PhD (Engineering), leading researcher
РоссияAnastasiya E. Memetova Memetova
Tambov State Technical University, Tambov
Email: anastasia.90k@mail.ru
ORCID iD: 0000-0002-1036-7389
PhD (Engineering), assistant professor of Chair “Technology and Methods of Nanoproducts Manufacturing”
РоссияNikolay A. Chapaksov
Tambov State Technical University, Tambov
Email: tchapaxov.nikolaj@yandex.ru
ORCID iD: 0000-0001-9076-9400
junior researcher of Chair “Nanotechnology Engineering”
РоссияAlena V. Gerasimova
Tambov State Technical University, Tambov
Email: alyona_gerasimova_92@mail.ru
ORCID iD: 0000-0003-1912-6642
PhD (Engineering), senior lecturer of Chair “Technology and Methods of Nanoproducts Manufacturing”
РоссияReferences
- Zhu J., Birgisson B., Kringos N. Polymer modification of bitumen: Advances and challenges. European Polymer Journal, 2014, vol. 54, pp. 18–38. doi: 10.1016/j.eurpolymj.2014.02.005.
- Presti D.L. Recycled Tyre Rubber Modified Bitumens for road asphalt mixtures: A literature review. Construction and Building Materials, 2013, vol. 49, pp. 863–881. doi: 10.1016/j.conbuildmat.2013.09.007.
- Gulisano F., Gallego J. Microwave heating of asphalt paving materials: Principles, current status and next steps. Construction and Building Materials, 2021, vol. 278, article number 121993. doi: 10.1016/j.conbuildmat.2020.121993.
- Crucho J., Picado-Santos L., Neves J., Capitão S. A Review of Nanomaterials’ Effecton Mechanical Performance and Aging of Asphalt Mixtures. Applied Sciences, 2019, vol. 9, no. 19, article number 3657. doi: 10.3390/app9183657.
- Wu Sh., Tahri О. State-of-art carbon and graphene family nanomaterials for asphalt modification. Road Materials and Pavement Design, 2019, vol. 22, no. 5, pp. 1–22. doi: 10.1080/14680629.2019.1642946.
- Latifi H., Hayati P. Evaluating the effects of the wet and simple processes for including carbon Nanotube modifier in hot mix asphalt. Construction and Building Materials, 2018, vol. 164, pp. 326–336. doi: 10.1016/j.conbuildmat.2017.12.237.
- Le J.L., Marasteanu M.O., Turos M. Mechanical and compaction properties of graphite nanoplatelet-modified asphalt binders and mixtures. Road Materials and Pavement Design, 2020, vol. 21, no. 5, pp. 1799–1814. doi: 10.1080/14680629.2019.1567376.
- Li C., Wu S., Chen Z., Tao G., Xiao Y. Improved microwave heating and healing properties of bitumen by using nanometer microwave-absorbers. Construction and Building Materials, 2018, vol. 189, pp. 757–767. doi: 10.1016/j.conbuildmat.2018.09.050.
- Gulisano F., Crucho J., Gallego J., Picado-Santos L. Microwave healing performance of asphalt mixture containing electric arc furnace (EAF) slag and graphene nanoplatelets (GNPs). Applied Sciences, 2020, vol. 10, no. 4, article number 1428. doi: 10.3390/app10041428.
- Xu S., García A., Su J.-F., Liu Q., Tabaković A., Schlangen E. Self-Healing Asphalt Review: From Idea to Practice. Advanced Materials Interfaces, 2018, vol. 5, article number 1800536. doi: 10.1002/admi.201800536.
- Stolyarov R.A., Yagubov V.S., Memetova A.E., Memetov N.R., Tkachev A.G., Chapaksov N.A. Electrically conductive nanocomposites based on chloroprene rubber, containing multi-walled carbon nanotubes Taunit and Taunit-M. Materialovedenie, 2022, no. 5, pp. 41–48. EDN: DNHSIL.
- Vovchenko L., Matzui L., Oliynyk V., Launets V., Mamunya Ye., Maruzhenko O. Nanocarbon/polyethylene composites with segregated conductive network for electromagnetic interference shielding. Molecular Crystals and Liquid Crystals, 2018, vol. 672, no. 1, pp. 186–198. doi: 10.1080/15421406.2018.1555349.
- Vovchenko L., Matzui L., Oliynyk V., Launetz V., Zagorodnii V., Lazarenko O. Chapter 2. Electrical and shielding properties of nanocarbon-epoxy composites. Conductive Materials and Composites. New York, Nova Science Publ., 2016, pp. 29–91.
- Memetov N.R., Gerasimova A.V., Stolyarov R.A., Tkachev A.G., Melezhik A.V., Chapaksov N.A., Osipkov A.S., Mikhalev P.A., Provatorov A.S. Composite Materials Based on Foam Polyurethane and Graphene Nanoplates Effectively Screening Electromagnetic Radiation. Advanced Materials and Technologies, 2020, no. 17, pp. 68–73. doi: 10.17277/amt.2020.01.pp.068-073.
- Blokhin A., Stolyarov R., Burmistrov I. et al. Increasing electrical conductivity of PMMA-MWCNT composites by gas phase iodination. Composites Science and Technology, 2021, vol. 214, article number 108972. doi: 10.1016/j.compscitech.2021.108972.
- Mamunya E.P., Davidenko V.V., Lebedev E.V. Percolation conductivity of polymer composites filled with dispersed conductive filler. Polymer composites, 1995, vol. 16, no. 4, pp. 319–324. doi: 10.1002/pc.750160409.