Microstructure and properties of the Zn–1%Li–2%Mg alloy subjected to severe plastic deformation

Cover Page

Cite item

Abstract

In this paper, the authors consider the mechanisms of formation of high-strength states in the Zn–1%Li–2%Mg alloy as a result of its processing by the high pressure torsion (HPT) method. For the first time, the study showed that using HPT treatment, as a result of varying the degree of deformation at room temperature, it is possible to increase the ultimate strength of a zinc alloy from 155 to 383 MPa (with an increase in the yield stress from 149 to 306 MPa) without losing its ductility. To explain the reasons for the increase in the zinc alloy mechanical properties, its microstructure was analyzed by scanning electron microscopy (SEM), X-ray phase analysis (XPA), X-ray diffraction analysis (XRD), and small-angle X-ray scattering (SAXS). Using XPA, the authors established for the first time that Zn(eutectic)+β-LiZn4(eutectic)→~LiZn3+Zn(phase)+Zn(precipitation) and MgZn2→Mg2Zn11 phase transformations occur in the zinc alloy during HPT treatment. SEM analysis showed that at the initial stages of HPT treatment, cylindrical Zn particles with a diameter of 330 nm and a length of up to 950 nm precipitate in β-LiZn3 phase. At the same time, the SAXS method showed that needle-like LiZn4 particles with a diameter of 9 nm and a length of 28 nm precipitate in the Zn phase. The study established that, only spherical Zn and LiZn4 particles precipitate at high degrees of HPT treatment. Precision analysis of the zinc alloy microstructure showed that HPT treatment leads to grain refinement, an increase in the magnitude of crystal lattice microdistortion, a growth of the density of dislocations, which are predominantly of the edge type. As a result of the analysis of hardening mechanisms, the authors concluded that the increase in the zinc alloy strength characteristics mainly occurs due to grain-boundary, dislocation, and dispersion hardening.

About the authors

Vil D. Sitdikov

LLC RN-BashNIPIneft, Ufa;
Institute of Physics of Molecules and Crystals of Ufa Research Center of the RAS, Ufa

Author for correspondence.
Email: SitdikovVD@bnipi.rosneft.ru
ORCID iD: 0000-0002-9948-1099

Doctor of Sciences (Physics and Mathematics), expert

Russian Federation

Elvira D. Khafizova

Institute of Physics of Molecules and Crystals of Ufa Research Center of the RAS, Ufa;
Ufa University of Science and Technologies, Ufa

Email: ela.90@mail.ru
ORCID iD: 0000-0002-4618-412X

PhD (Engineering), assistant professor of Chair of Materials Science and Physics of Metals, senior researcher at the Research Laboratory “Metals and Alloys under Extreme Impacts”

Russian Federation

Milena V. Polenok

Institute of Physics of Molecules and Crystals of Ufa Research Center of the RAS, Ufa;
Ufa University of Science and Technologies, Ufa

Email: renaweiwei.179@mail.ru
ORCID iD: 0000-0001-9774-1689

graduate student, laboratory assistant of the Research Laboratory “Metals and Alloys under Extreme Impacts”

Russian Federation

References

  1. Yang H., Jia B., Zhang Z., Qu X., Li G., Lin W., Zhu D., Dai K., Zheng Yu. Alloying design of biodegradable zinc as promising bone implants for load-bearing applications. Nature Communications, 2020, vol. 11, no. 1, article number 401. doi: 10.1038/s41467-019-14153-7.
  2. Jia B., Yang H., Han Yu., Zhang Z., Qu X., Zhuang Y., Wu Q., Zheng Yu., Dai K. In vitro and in vivo studies of Zn-Mn biodegradable metals designed for orthopedic applications. Acta Biomaterialia, 2020, vol. 108, pp. 358–372. doi: 10.1016/j.actbio.2020.03.009.
  3. Li Z., Shi Z.-Z., Hao Y., Li H.-F., Liu X.-F., Volinsky A.A., Zhang H.-J., Wang L.-N. High-performance hot-warm rolled Zn-0.8Li alloy with nano-sized metastable precipitates and sub-micron grains for biodegradable stents. Journal of Materials Science and Technology, 2019, vol. 35, no. 11, pp. 2618–2624. doi: 10.1016/j.jmst.2019.06.009.
  4. Tong X., Zhang D., Zhang X. et al. Microstructure, mechanical properties, biocompatibility, and in vitro corrosion and degradation behavior of a new Zn–5Ge alloy for biodegradable implant materials. Acta Biomaterialia, 2018, vol. 82, pp. 197–204. doi: 10.1016/j.actbio.2018.10.015.
  5. Bowen P.K., Drelich J., Goldman J. Zinc Exhibits Ideal Physiological Corrosion Behavior for Bioabsorbable Stents. Advanced materials, 2013, vol. 25, pp. 2577–2582. doi: 10.1002/adma.201300226.
  6. Li Z., Shi Z.-Z., Hao Y., Li H.-H., Zhang H.-J., Liu X.-F., Wang L.-N. Insight into role and mechanism of Li on the key aspects of biodegradable Zn-Li alloys: Microstructure evolution, mechanical properties, corrosion behavior and cytotoxicity. Materials Science and Engineering C, 2020, vol. 114, article number 111049. doi: 10.1016/j.msec.2020.111049.
  7. Sitdikov V.D., Kulyasova O.B., Sitdikova G.F., Islamgaliev R.K., Yufeng Zh. Structural-phase transformations in the Zn-Li-Mg alloy exposed to the severe plastic torsion deformation. Frontier Materials & Technologies, 2022, vol. 3-2, pp. 44–55. doi: 10.18323/2782-4039-2022-3-2-44-55.
  8. Zhang Y., Yan Y., Xu X., Lu Y., Chen L., Li D., Dai Y., Kang Y., Yu K. Investigation on the microstructure, mechanical properties, in vitro degradation behavior and biocompatibility of newly developed Zn-0.8%Li-(Mg, Ag) alloys for guided bone regeneration. Materials Science and Engineering: C, 2019, vol. 99, pp. 1021–1034. doi: 10.1016/j.msec.2019.01.120.
  9. Martynenko N., Anisimova N., Rybalchenko O. et al. Structure, Biodegradation, and In Vitro Bioactivity of Zn–1%Mg Alloy Strengthened by High-Pressure Torsion. Materials, 2022, vol. 15, article number 9073. DOI: 10.3390/ ma15249073.
  10. Mollaei N., Fatemi S.M., Abootalebi M., Razavi H. Zinc based bioalloys processed by severe plastic deformation - A review. Journal Ultrafine Grained Nanostructure Materials, 2020, vol. 53, pp. 39–47. doi: 10.22059/JUFGNSM.2020.01.06.
  11. Ye L., Liu H., Sun C., Zhuo X., Ju J., Xue F., Bai J., Jiang J., Xin Y. Achieving high strength, excellent ductility, and suitable biodegradability in a Zn-0.1Mg alloy using room-temperature ECAP. Journal of Alloys Compounds, 2022, vol. 926, article number 166906. doi: 10.1016/j.jallcom.2022.166906.
  12. Chen C., Fan S., Niu J., Huang H., Jin Z., Kong L., Zhu D., Yuan G. Alloying design strategy for biodegradable zinc alloys based on first-principles study of solid solution strengthening. Materials & Design, 2021, vol. 204, article number 109676. doi: 10.1016/j.matdes.2021.109676.
  13. Leoni M., Confente T., Scardi P. PM2K: A flexible program implementing Whole Powder Pattern Modelling. Zeitschrift für Kristallographie, Supplement, 2006, vol. 1, no. 23, pp. 249–254. doi: 10.1524/9783486992526-043.
  14. Rietveld H.M. A profile refinement method for nuclear and magnetic structures. Journal of Applied Crystallography, 1969, vol. 2, no. 2, pp. 65–71. doi: 10.1107/S0021889869006558.
  15. Jette E.R., Foote F. Precision determination of lattice constants Locality: synthetic Sample: at T = 25 C Note: lattice parameter is average of three samples. Journal of Chemical Physics, 1935, vol. 3, pp. 605–616. doi: 10.1063/1.1749562.
  16. Boldon L., Laliberte F., Liu L. Review of the fundamental theories behind small angle X-ray scattering, molecular dynamics simulations, and relevant integrated application. Nano Review, 2015, vol. 6, article number 25661. doi: 10.3402/nano.v6.25661.
  17. Pedersen J.S. Analysis of small-angle scattering data from colloids and polymer solutions: modeling and least-squares fitting. Advances in Colloid and Interface Science, 1997, vol. 70, pp. 171–210. doi: 10.1016/s0001-8686(97)00312-6.
  18. Pavlyuk V., Chumak I., Akselrud L., Lidin S., Ehrenberg H. LiZn~4{-~x} (x = 0.825) as a (3+1)-dimensional modulated derivative of hexagonal close packing. Acta Crystallographica, 2014, vol. 70, pp. 212–217. doi: 10.1107/S2052520613030709.
  19. Bednarczyk W., Wątroba M., Kawałko J., Bała, P. Can zinc alloys be strengthened by grain refinement? A critical evaluation of the processing of low-alloyed binary zinc alloys using ECAP. Materials Science and Engineering: A, 2019, vol. 748, pp. 357–366. doi: 10.1016/j.msea.2019.01.117.
  20. Bednarczyk W., Wątroba M., Jain M., Mech K., Bazarnik P., Bała P., Michler J., Wieczerzak K. Determination of critical resolved shear stresses associated with slips in pure Zn and Zn-Ag alloys via micro-pillar compression. Materials & Design, 2023, vol. 229, article number 111897. doi: 10.1016/j.matdes.2023.111897.
  21. Lee J.D., Niessen P. Superplasticity in a new dispersion strengthened zinc alloy. Metallurgical Transactions, 1973, vol. 4, pp. 949–957. doi: 10.1007/BF02645595.
  22. Zhao C., Chen X., Pan F., Wang J., Gao S., Tu T., Liu C., Yao J., Atrens A. Strain hardening of as-extruded Mg-xZn (x = 1, 2, 3 and 4 wt%) alloy. Journal of Materials Science & Technology, 2019, vol. 35, no. 1, pp. 142–150. doi: 10.1016/j.jmst.2018.09.015.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c)



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies