Cyclic regularities of the acoustic emission generation during plasma-electrolytic oxidation of an Al–Mg alloy in the bipolar mode

Cover Page

Cite item

Abstract

The paper analyzes the features of the acoustic emission (AE) signal generation during plasma-electrolytic oxidation (PEO) of the AMg6 aluminum alloy in a bipolar (anode-cathode) pulsed mode within each cycle of voltage application. The authors studied the range of PEO modes that almost completely covers all standard technological modes for processing aluminum alloys by the current densities (6–18 A/dm2) and current ratio in half-cycles (0.7–1.3), which allowed fixing and studying the AE accompanying the formation of oxide layers for various purposes. For the first time, due to AE registration, a new PEO stage was identified, in which there was no microarc breakdown to the substrate, but which was accompanied by an increase in the layer thickness, and the nature of which has not yet been determined. According to the known features of the oxidation stages, the authors systematized the repetitive forms of AE manifestation in the cycles of exposure and identified their five types and three subtypes. The study shows that the approach used to establish the PEO stages by the “acoustic emission amplitude” parameter has poor accuracy, since it does not take into account the form of signals and the half-period of their registration. Therefore, the authors developed and tested a new approach for analyzing AE frames synchronously with the cycles of change in the forming voltage during PEO, and proposed a new “acoustic-emission median” parameter, which allows identifying the main types and subtypes of signals accompanying the oxidation stages. An experimental study of the proposed AE parameter was carried out to identify these PEO stages, which confirmed the operability, high accuracy and sensitivity of the proposed parameter to the subtypes of AE signals recorded at the cathode stage of “soft sparking”. The latter is of particular interest, since it is a means of studying a given oxidation stage with a resolution equal to the exposure cycle.

About the authors

Igor A. Rastegaev

Togliatti State University, Togliatti

Author for correspondence.
Email: RastIgAev@yandex.ru
ORCID iD: 0000-0003-3807-8105

PhD (Physics and Mathematics), senior researcher of the Research Institute of Advanced Technologies 

Russian Federation

Marat R. Shafeev

Togliatti State University, Togliatti

Email: shelf-tlt@yandex.ru
ORCID iD: 0000-0002-4490-6547

junior researcher of the Research Institute of Advanced Technologies

Russian Federation

Inna I. Rastegaeva

Togliatti State University, Togliatti

Email: I.Rastegaeva@tltsu.ru
ORCID iD: 0000-0002-7634-2328

senior lecturer of Chair “Nanotechnologies, Materials Science and Mechanics”

Russian Federation

Anton V. Polunin

Togliatti State University, Togliatti

Email: Anpol86@gmail.com
ORCID iD: 0000-0001-8484-2456

PhD (Engineering), leading researcher of the Research Institute of Advanced Technologies

Russian Federation

Mikhail M. Krishtal

Togliatti State University, Togliatti

Email: krishtal@tltsu.ru
ORCID iD: 0000-0001-7189-0002

Doctor of Sciences (Physics and Mathematics), Professor, chief researcher of the Research Institute of Advanced Technologies

Russian Federation

References

  1. Mardare C.C., Hassel A.W. Review on the Versatility of Tungsten Oxide Coatings. Physica Status Solidi A, 2019, vol. 216, no. 12, article number 1900047. doi: 10.1002/pssa.201900047.
  2. Simchen F., Sieber M., Kopp A., Lampke T. Introduction to Plasma Electrolytic Oxidation–An Overview of the Process and Applications. Coatings, 2020, vol. 10, no. 7, article number 628. doi: 10.3390/coatings10070628.
  3. Martin J., Melhem A., Shchedrina I., Duchanoy T., Nominé A., Henrion G., Czerwiec T., Belmonte T. Effects of electrical parameters on plasma electrolytic oxidation of aluminium. Surface and Coatings Technology, 2013, vol. 221, pp. 70–76. doi: 10.1016/j.surfcoat.2013.01.029.
  4. Rogov A.B., Yerokhin A., Matthews A. The role of cathodic current in plasma electrolytic oxidation of aluminum: Phenomenological concepts of the “soft sparking” mode. Langmuir, 2017, vol. 33, no. 41, pp. 11059–11069. doi: 10.1021/acs.langmuir.7b02284.
  5. Rogov A.B., Matthews A., Yerokhin A. Relaxation Kinetics of Plasma Electrolytic Oxidation Coated Al Electrode: Insight into the Role of Negative Current. The Journal of Physical Chemistry C, 2020, vol. 124, no. 43, pp. 23784–23797. doi: 10.1021/acs.jpcc.0c07714.
  6. Rahmati M., Raeissi K., Toroghinejad M.R., Hakimizad A., Santamaria M. Effect of Pulse Current Mode on Microstructure, Composition and Corrosion Performance of the Coatings Produced by Plasma Electrolytic Oxidation on AZ31 Mg Alloy. Coatings, 2019, vol. 9, no. 10, article number 688. doi: 10.3390/coatings9100688.
  7. Butyagin P.I., Khokhryakov E.V., Mamaev A.I. Effect of Electrolyte Composition on the Wear Resistance of MAO Coatings. Tekhnologiya metallov, 2005, no. 1, pp. 36–40. EDN: KVFCPL.
  8. Kuchmin I.B., Nechaev G.G., Soloveva N.D. Changes in the character of physical and chemical properties of two-silicate alkaline electrolyte for microarc oxidation over the production process. Vestnik Saratovskogo gosudarstvennogo tekhnicheskogo universiteta, 2013, vol. 4, no. 1, pp. 57–62. EDN: SEFXLX.
  9. Hussein R.O., Northwood D.O., Nie X. Processing Microstructure Relationships in the Plasma Electrolytic Oxidation (PEO) Coating of a Magnesium Alloy. Materials Sciences and Applications, 2014, vol. 5, no. 3, pp. 124–139. doi: 10.4236/msa.2014.53017.
  10. Yerokhin A.L., Nie X., Leyland A., Matthews A., Dowey S.J. Plasma electrolysis for surface engineering. Surface and Coatings Technology, 1999, vol. 122, no. 2-3, pp. 73–93. doi: 10.1016/S0257-8972(99)00441-7.
  11. Suminov I.V., Belkin P.N., Epelfeld A.V., Lyudin V.B., Krit B.L., Borisov A.M. Plazmenno-elektroliticheskoe modifitsirovanie poverkhnosti metallov i splavov [Plasma-electrolytic surface modification of metals and alloys]. Moscow, Tekhnosfera Publ., 2011. Vol. 2, 512 p.
  12. Golubkov P.E., Pecherskaya E.A., Kozlov G.V., Zinchenko T.O., Melnikov O.A., Shepeleva J.V. Application of impedance spectroscopy for research of the micro-arc oxidation process. Proceedings – 2020 7th International Congress on Energy Fluxes and Radiation Effects (EFRE 2020). Tomsk, Publishing House of IAO SB RAS, 2020, pp. 773–777.
  13. Arrabal R., Matykina E., Hashimoto T., Skeldon P., Thompson G.E. Characterization of AC PEO coatings on magnesium alloys. Surface and Coatings Technology, 2009, vol. 203, no. 16, pp. 2207–2220. doi: 10.1016/j.surfcoat.2009.02.011.
  14. Clyne T.W., Troughton S.Ch. A review of recent work on discharge characteristics during plasma electrolytic oxidation of various metals. International Materials Reviews, 2019, vol. 64, no. 3, pp. 127–162. doi: 10.1080/09506608.2018.1466492.
  15. Rakoch A.G., Gladkova A.A., Linn Z., Strekalina D.M. The evidence of cathodic micro-discharges during plasma electrolytic oxidation of light metallic alloys and micro-discharge intensity depending on pH of the electrolyte. Surface and Coatings Technology, 2015, vol. 269, pp. 138–144. doi: 10.1016/j.surfcoat.2015.02.026.
  16. Wang L., Chen L., Yan Z., Fu W. Optical emission spectroscopy studies of discharge mechanism and plasma characteristics during plasma electrolytic oxidation of magnesium in different electrolytes. Surface and Coatings Technology, 2010, vol. 205, no. 6, pp. 1651–1658. doi: 10.1016/j.surfcoat.2010.10.022.
  17. Jin F.-Y., Wang K., Zhu M., Shen L.-R., Li J., Hong H.-H., Chu P.K. Infrared reflection by alumina films produced on aluminum alloy by plasma electrolytic oxidation. Materials Chemistry and Physics, 2009, vol. 114, no. 1, pp. 398–401. doi: 10.1016/j.matchemphys.2008.09.060.
  18. Golubkov P.E. Analysis of the applicability of thickness measurement methods dielectric layers in controlled synthesis protective coatings by micro-arc method oxygenating. Izmerenie. Monitoring. Upravlenie. Kontrol, 2020, no. 1, pp. 81–92. doi: 10.21685/2307-5538-2020-1-11.
  19. Rastegaeva I.I., Rastegaev I.A., Vikarchuk A.A., Merson D.L., Seleznev M.N., Vinogradov A.Yu. Acouctic emission-based feedback system for optimization of liquid processing in rotor devices. Pribory i sistemy. Upravlenie, Kontrol, Diagnostika, 2012, no. 5, pp. 25–31. EDN: SMJGQD.
  20. Darband G.B., Aliofkhazraei M., Hamghalam P., Valizade N. Plasma electrolytic oxidation of magnesium and its alloys: Mechanism, properties and applications. Journal of Magnesium and Alloys, 2017, vol. 5, no. 1, pp. 74–132. doi: 10.1016/j.jma.2017.02.004.
  21. Tjiang F., Ye L., Huang Y.-J., Chou C.-C., Tsai D.-S. Effect of processing parameters on soft regime behavior of plasma electrolytic oxidation of magnesium. Ceramics International, 2017, vol. 43, no. 1, pp. S567–S572. doi: 10.1016/j.ceramint.2017.05.179.
  22. Tsai D.-S., Chou C.-C. Review of the Soft Sparking Issues in Plasma Electrolytic Oxidation. Metals, 2018, vol. 8, no. 2, article number 105. doi: 10.3390/met8020105.
  23. Bespalova Zh.I., Panenko I.N., Dubovskov V.V., Kozachenko P.N., Kudryavtsev Yu.D. Investigation of the formation of optical black oxide-ceramic coatings on the surface of aluminum alloy 1160. Izvestiya vysshikh uchebnykh zavedeniy. Severo-Kavkazskiy region. Seriya: Estestvennye nauki, 2012, no. 5, pp. 63–66. EDN: PFATGJ.
  24. Mukaeva V.R., Gorbatkov M.V., Farrakhov R.G., Parfenov E.V. A study of the acoustic characteristics of plasma electrolytic oxidation of aluminum. Elektrotekhnicheskie i informatsionnye kompleksy i sistemy, 2018, vol. 14, no. 3, pp. 60–65. EDN: YSAZNZ.
  25. Bao F., Bashkov O.V., Chzhan D., Lyuy L., Bashkova T.I. The study of the influence of micro-arc oxidation modes on the morphology and parameters of an oxide coating on the D16AT aluminum alloy. Frontier Materials & Technologies, 2023, no. 1, pp. 7–21. doi: 10.18323/2782-4039-2023-1-7-21.
  26. Boinet M., Verdier S., Maximovitch S., Dalard F. Plasma electrolytic oxidation of AM60 magnesium alloy: Monitoring by acoustic emission technique. Electrochemical properties of coatings. Surface and Coatings Technology, 2005, vol. 199, no. 2-3, pp. 141–149. doi: 10.1016/j.surfcoat.2004.10.145.
  27. Boinet M., Verdier S., Maximovitch S., Dalard F. Application of acoustic emission technique for in situ study of plasma anodizing. NDT & E International, 2004, vol. 37, no. 3, pp. 213–219. doi: 10.1016/j.ndteint.2003.09.011.
  28. Rastegaev I.A., Polunin A.V. Regularities and features of acoustic emission under plasma electrolytic oxidation of wrought Al-Mg alloy. Journal of Physics: Conference Series, 2021, vol. 2144, article number 012020. doi: 10.1088/1742-6596/2144/1/012020.
  29. Kaseem M., Fatimah S., Nashrah N., Ko Y.G. Recent progress in surface modification of metals coated by plasma electrolytic oxidation: Principle, structure, and performance. Progress in Materials Science, 2021, vol. 117, article number 100735. doi: 10.1016/j.pmatsci.2020.100735.
  30. Cheng Y.-L., Xue Z., Wang Q., Wu X.-Q., Matykina E., Skeldon P., Thompson G.E. New findings on properties of plasma electrolytic oxidation coatings from study of an Al–Cu–Li alloy. Electrochimica Acta, 2013, vol. 107, pp. 358–378. doi: 10.1016/j.electacta.2013.06.022.
  31. Troughton S.C., Clyne T.W. Cathodic discharges during high frequency plasma electrolytic oxidation. Surface and Coatings Technology, 2018, vol. 352, pp. 591–599. doi: 10.1016/j.surfcoat.2018.08.049.
  32. Polunin A.V., Denisova A.G., Cheretaeva A.O., Shafeev M.R., Borgardt E.D., Rastegaev I.A., Katsman A.V. The effect of process current parameters on the properties of oxide layers under plasma electrolytic oxidation of AMg6 alloy. Journal of Physics: Conference Series, 2021, vol. 2144, article number 012018. doi: 10.1088/1742-6596/2144/1/012018.
  33. Polunin A.V., Cheretaeva A.O., Shafeev M.R., Denisova A.G., Borgardt E.D., Rastegaev I.A., Katsman A.V., Krishtal M.M. Mechanical and anticorrosive properties of oxide layers formed by PEO on wrought 1560 Al-Mg alloy: The effect of electric current parameters. AIP Conference Proceedings, 2022, vol. 2533, article number 020029. doi: 10.1063/5.0098844.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c)



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies