Different-sized porosity and thermal conductivity of oxide layers formed by plasma-electrolytic oxidation on the AlSi12Mg silumin

Cover Page

Cite item

Full Text

Abstract

Oxide layers formed by plasma-electrolytic oxidation (PEO) are characterized by a sufficiently high porosity, which influences almost the whole complex of service characteristics. However, the known data on the integral porosity of PEO-produced layers are rather contradictory, and the pore size distribution in these layers remains understudied.  Pore size distribution in the range of 10 nm to 10 µm (pore geometry was approximated by a spherical shape) was obtained by using analysis of scanning electron microscopy (SEM) images in a wide range of magnifications. Lognormal distribution function fits the shape of pore size distribution sufficiently well. Such distribution indicates the nature of pore formation, which can be related to the thermally activated process of gas emission from a liquid melt, the volume and average temperature of which, in turn, depend on the micro-arc discharge energy. The results of the oxide layer phase composition and crystallites sizes by the X-ray crystallography were described in the present paper. The amorphous component phase composition was estimated by the comparing of the of X-ray spectral microanalysis and X-ray crystallography methods. The thermal conductivity of the intact oxide layer and the polished layer (after the removal of its highly-porous outer part) was evaluated by using of the steady-state method and the laser flash method. The porosity values calculated based on the analysis of SEM-images, and the results of determining the phase composition, including amorphous phases, allowed evaluating the oxide layer thermal conductivity with use of four known analytical models. The results of calculating the thermal conductivity using the Loeb model demonstrate the good convergence with the experimental results obtained in this paper. Modeling results the size of crystallites effect on the oxide layer thermal conductivity significantly less than the porosity and amorphous phase.

About the authors

Pavel V. Ivashin

Togliatti State University, Togliatti

Author for correspondence.
Email: ivashinpv@gmail.com

PhD (Engineering), senior researcher

Russian Federation

Mikhail M. Krishtal

Togliatti State University, Togliatti

Email: krishtal@tltsu.ru
ORCID iD: 0000-0001-7189-0002

Doctor of Sciences (Physics and Mathematics), Professor

Russian Federation

Andrey Ya. Tverdokhlebov

Togliatti State University, Togliatti

Email: andr.tverd@gmail.com

engineer

Russian Federation

Anton V. Polunin

Togliatti State University, Togliatti

Email: anpol86@gmail.com
ORCID iD: 0000-0001-8484-2456

PhD (Engineering), leading researcher

Russian Federation

Natalya Yu. Dudareva

Ufa University of Science and Technology, Ufa

Email: dudareva.nyu@ugatu.su
ORCID iD: 0000-0003-2269-0498

Doctor of Sciences (Engineering), Professor

Russian Federation

Aleksandr B. Kruglov

National Research Nuclear University MEPhI, Moscow

Email: ABKruglov@mephi.ru
ORCID iD: 0000-0002-0530-0729

PhD (Physics and Mathematics), Associate Professor

Russian Federation

References

  1. Hegab A., Dahuwa K., Islam R., Cairns A., Khurana A., Shrestha S., Francis R. Plasma electrolytic oxidation thermal barrier coating for reduced heat losses in IC engines. Applied Thermal Engineering, 2021, vol. 196, article number 117316. doi: 10.1016/J.APPLTHERMALENG.2021.117316.
  2. Curran J.A., Clyne T.W. The thermal conductivity of plasma electrolytic oxide coatings on aluminum and magnesium. Surface and Coatings Technology, 2005, vol. 199, no. 2-3, pp. 177–183. doi: 10.1016/j.surfcoat.2004.11.045.
  3. Dudareva N.Yu., Ivashin P.V., Gallyamova R.F., Tverdokhlebov A.Ya., Krishtal M.M. Structure and thermophysical properties of the oxide layer formed by microarc oxidation on AK12D Al–Si alloy. Metallovedenie i termicheskaya obrabotka metallov, 2020, no. 11, pp. 44–52. EDN: LLTZAL.
  4. Li M., Endo R., Wang L.J., Susa M. A New Method for Apparent Thermal Conductivity Determination for Sheet Samples Utilizing Principle of Bunsen Ice Calorimeter. Advances in Molten Slags, Fluxes, and Salts: Proceedings of the 10th International Conference on Molten Slags, Fluxes and Salts 2016, 2017, pp. 477–484. doi: 10.1007/978-3-319-48769-4_50.
  5. Doremus R.H. Alumina. Ceramic and Glass Materials Structure, Properties and Processing. New York, Springer US Publ., 2008, pp. 27–39. doi: 10.1007/978-0-387-73362-3.
  6. Curran J.A., Clyne T.W. Porosity in plasma electrolytic oxide coatings. Acta Materialia, 2006, vol. 54, no. 7, pp. 1985–1993. doi: 10.1016/J.ACTAMAT.2005.12.029.
  7. Zhang P., Zuo Y. Relationship between porosity, pore parameters and properties of microarc oxidation film on AZ91D magnesium alloy. Results in Physics, 2019, vol. 12, pp. 2044–2054. doi: 10.1016/J.RINP.2019.01.095.
  8. Li G., Ma F., Li Z., Xu Y., Gao F., Guo L., Zhu J., Li G., Xia Y. Influence of Applied Frequency on Thermal Physical Properties of Coatings Prepared on Al and AlSi Alloys by Plasma Electrolytic Oxidation. Coatings, 2021, vol. 11, no. 12, article number 1439. doi: 10.3390/coatings11121439.
  9. Curran J.A., Clyne Т.W. Thermo-physical properties of plasma electrolytic oxide coatings on aluminium. Surface and Coatings Technology, 2005, vol. 199, no. 2-3, pp. 168–176. doi: 10.1016/J.SURFCOAT.2004.09.037.
  10. Golosnoy I.O., Cipitria A., Clyne T.W. Heat Transfer Through Plasma-Sprayed Thermal Barrier Coatings in Gas Turbines: A Review of Recent Work. Journal of Thermal Spray Technology, 2009, vol. 18, no. 5-6, pp. 809–821. doi: 10.1007/S11666-009-9337-Y.
  11. Ghai R., Chen K., Baddour N. Modelling Thermal Conductivity of Porous Thermal Barrier Coatings. Coatings, 2019, vol. 9, no. 2, article number 101. doi: 10.3390/coatings9020101.
  12. Moon S., Arrabal R., Matykina E. 3-Dimensional structures of open-pores in PEO films on AZ31 Mg alloy. Materials Letters, 2015, vol. 161, pp. 439–441. doi: 10.1016/J.MATLET.2015.08.149.
  13. Anovitz L.M., Cole D.R. Characterization and Analysis of Porosity and Pore Structures. Reviews in Mineralogy and Geochemistry, 2015, vol. 80, no. 1, pp. 61–164. doi: 10.2138/RMG.2015.80.04.
  14. Tillous E.K., Toll-Duchanoy T., Bauer-Grosse E. Microstructure and 3D microtomographic characterization of porosity of MAO surface layers formed on aluminium and 2214-T6 alloy. Surface and Coatings Technology, 2009, vol. 203, no. 13, pp. 1850–1855. doi: 10.1016/J.SURFCOAT.2009.01.014.
  15. Lo Re G., Lopresti F., Petrucci G., Scaffaro R. A facile method to determine pore size distribution in porous scaffold by using image processing. Micron, vol. 76, pp. 37–45. doi: 10.1016/j.micron.2015.05.001.
  16. Young R.A. The Rietveld method. Oxford, Oxford Science Publ., 1993. 298 p.
  17. Nath D., Singh F., Das R. X-ray diffraction analysis by Williamson-Hall, Halder-Wagner and size-strain plot methods of CdSe nanoparticles- a comparative study. Materials Chemistry and Physics, 2020, vol. 239, article number 122021. doi: 10.1016/j.matchemphys.2019.122021.
  18. Rowe M.C., Brewer B.J. AMORPH: A statistical program for characterizing amorphous materials by X-ray diffraction. Computers and Geosciences, 2018, vol. 120, pp. 21–31. doi: 10.1016/j.cageo.2018.07.004.
  19. Padmaja Р., Anilkumar G.M., Mukundan P., Aruldhas G., Warrier K.G.K. Characterisation of stoichiometric sol–gel mullite by fourier transform infrared spectroscopy. International Journal of Inorganic Materials, 2001, vol. 3, no. 7, pp. 693–698. doi: 10.1016/S1466-6049(01)00189-1.
  20. Wang J., Carson J.K., North M.F., Cleland D.J. A new approach to modelling the effective thermal conductivity of heterogeneous materials. International Journal of Heat and Mass Transfer, 2006, vol. 49, no. 17-18, pp. 3075–3083. doi: 10.1016/J.IJHEATMASSTRANSFER.2006.02.007.
  21. Pietrak K., Wiśniewski T.S. A review of models for effective thermal conductivity of composite materials. Journal of Power of Technologies, 2014, vol. 95, pp. 14–24.
  22. Petrasch J., Schrader B., Wyss P., Steinfeld A. Tomography-Based Determination of the Effective Thermal Conductivity of Fluid-Saturated Reticulate Porous Ceramics. Journal of Heat Transfer, 2008, vol. 130, no. 3, article number 032602. doi: 10.1115/1.2804932.
  23. Hildmann B., Schneider H. Thermal Conductivity of 2/1-Mullite Single Crystals. Journal of the American Ceramic Society, 2005, vol. 88, no. 10, pp. 2879–2882. doi: 10.1111/J.1551-2916.2005.00530.X.
  24. Al Mohtar A., Tessier G., Ritasalo R., Matvejeff M., Stromonth-Darling J., Dobson P.S., Chapuis P.O., Gomes S., Roger J.P. Thickness-dependent thermal properties of amorphous insulating thin films measured by photoreflectance microscopy. Thin Solid Films, 2017, vol. 642, pp. 157–162. doi: 10.1016/J.TSF.2017.09.037.
  25. Scott E.A., Gaskins J.T., King S.W., Hopkins P.E. Thermal conductivity and thermal boundary resistance of atomic layer deposited high-k dielectric aluminum oxide, hafnium oxide, and titanium oxide thin films on silicon. APL Materials, 2018, vol. 6, no. 5, article number 058302. doi: 10.1063/1.5021044.
  26. Paterson J., Singhal D., Tainoff D., Richard J., Bourgeois O. Thermal conductivity and thermal boundary resistance of amorphous Al2O3 thin films on germanium and sapphire. Journal of Applied Physics, 2020, vol. 127, no. 24, article number 245105. doi: 10.1063/5.0004576.
  27. Zhou W.X., Cheng Y., Chen K.Q., Xie G., Wang T., Zhang G. Thermal conductivity of amorphous materials. Advanced Functional Materials, 2020, vol. 30, no. 8, article number 1903829. doi: 10.1002/adfm.201903829.
  28. Krishtal M.M., Katsman A.V., Polunin A.V. Effects of silica nanoparticles addition on formation of oxide layers on Al–Si alloy by plasma electrolytic oxidation: The origin of stishovite under ambient conditions. Surface and Coatings Technology, 2022, vol. 441, article number 128556. doi: 10.1016/j.surfcoat.2022.128556.
  29. Badry F., Ahmed K. A new model for the effective thermal conductivity of polycrystalline solids. AIP Advances, 2020, vol. 10, no. 10, article number 105021. doi: 10.1063/5.0022375.
  30. Meyer K.E., Cheaito R., Paisley E., Shelton Ch.T., Braun J.L., Maria J.-P., Ihlefeld J.F., Hopkins P.E. Crystalline coherence length effects on the thermal conductivity of MgO thin films. Journal of Materials Science, 2016, vol. 51, no. 23, pp. 10408–10417. doi: 10.1007/s10853-016-0261-5.
  31. Dong H., Wen B., Melnik R.V. Relative importance of grain boundaries and size effects in thermal conductivity of nanocrystalline materials. Scientific Reports, 2014, vol. 4, article number 7037. doi: 10.1038/srep07037.
  32. Dong H., Hirvonen P., Fan Z., Ala‐Nissila T. Heat transport in pristine and polycrystalline single-layer hexagonal boron nitride. Physical chemistry chemical physics, 2018, vol. 20, no. 38, pp. 24602–24612. doi: 10.1039/C8CP05159C.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c)



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies