Increasing the wear resistance of a radial bearing with a non-standard support profile and polymer coating on the shaft surface taking into account the pressure-viscosity ratio

Cover Page

Cite item

Full Text

Abstract

The paper covers the development and analysis of a model of the true viscous lubricant movement in the working gap of a radial sliding bearing with a non-standard support profile having a fluoroplastic composite polymer coating with a groove on the shaft surface. The authors obtained new models based on the classical equation in the approximation for the “thin layer” and the continuity equation describing the laminar pattern of movement of a lubricant with the viscous rheological properties. The results of the numerical analysis of the developed models allowed obtaining a quantitative assessment of the efficiency of the bearing bush support profile and the polymer-coated shaft with an axial groove. To complete the set of studies and verify theoretical insights, the authors carried out the experimental research. The novelty of the work lies in the development of an engineering calculation technique that allows determining the magnitude of the main tribotechnical parameters of a radial sliding bearing (hydrodynamic pressure, load capacity, and friction ratio) and expanding the area of practical application of the developed engineering calculations. The design of the radial bearing with a fluoroplastic antifriction composite polymer coating, a 3 mm wide groove, and a special support profile ensured the stable shaft ascent on the hydrodynamic wedge, which experimentally confirmed the correctness of the results of theoretical studies of sliding bearings with a diameter of 40 mm at a sliding speed of 0.3–3 m/s and a load of 13–65 MPa.

About the authors

Khaidar N. Abdulrakhman

Rostov State Transport University, Rostov-on-Don

Email: Abdulrahm.haidar@gmail.com
ORCID iD: 0000-0002-1588-9311

PhD (Physics and Mathematics), Associate Professor

Russian Federation

Viktoria I. Kirishchieva

Rostov State Transport University, Rostov-on-Don

Email: Milaya_vika@list.ru
ORCID iD: 0000-0001-7275-2576

postgraduate student of Chair of Higher Mathematics

Russian Federation

Murman A. Mukutadze

Rostov State Transport University, Rostov-on-Don

Author for correspondence.
Email: murman1963@yandex.ru
ORCID iD: 0000-0003-2810-3047

Doctor of Sciences (Engineering), Professor, Head of Chair of Higher Mathematics

Russian Federation

Valentina E. Shvedova

Rostov State Transport University, Rostov-on-Don

Email: Shvedovavalya@yandex.ru
ORCID iD: 0000-0002-8469-7671

postgraduate student of Chair of Higher Mathematics

Russian Federation

References

  1. Kokhanovskiy V.A., Kamerova E.A. Composites cover content fluor ethylene in the liquid lubricants. Trenie i smazka v mashinakh i mekhanizmakh, 2014, no. 1, pp. 34–37. EDN: RVQGBD.
  2. Kokhanovskiy V.A., Kamerova E.A. Friction of the polymeric cover in the liquid lubricants. Trenie i smazka v mashinakh i mekhanizmakh, 2014, no. 4, pp. 17–20. EDN: SBJMAT.
  3. Kamerova E.A., Vlasenko I.B., Snezhina N.G., Oganesyan P.A. Methodology for studying the effect of liquid media on fluoropolymer-containing antifriction coatings. Uralskiy nauchnyy vestnik, 2014, no. 21, pp. 137–142.
  4. Pavlycheva E.A. Development of polymer composition for obtaining a protective coating on metal. Mezhdunarodnyy zhurnal prikladnykh i fundamentalnykh issledovaniy, 2022, no. 2, pp. 33–36. doi: 10.17513/mjpfi.13355.
  5. Kondrashov S.V., Shashkeev K.A., Petrova G.N., Mekalina I.V. Constructional polymer composites with functional properties. Aviatsionnye materialy i tekhnologii, 2017, no. S, pp. 405–419. doi: 10.18577/2071-9140-2017-0-S-405-419.
  6. Kuznetsov A.A., Semenova G.K., Svidchenko E.A. Engineering thermoplastics as a basic material of selflubricating polimer composits for antifriction purposes. Voprosy materialovedeniya, 2009, no. 1, pp. 116–126. EDN: KUAIKL.
  7. Negmatov S.S., Abed N.S., Saidakhmedov R.Kh. et al. Research of viscoelastic and adhesion-strength property and development of effective vibration absorbing composite polymeric materials and coatings of mechanical engineering purpose. Plasticheskie massy, 2020, no. 7–8, pp. 32–36. doi: 10.35164/0554-2901-2020-7-8-32-36.
  8. Bryanskiy A.A., Bashkov O.V., Belova I.V., Bashkova T.I. Investigation of damages formed in polymer composite materials under bending loading and their identification by the acoustic emission technique. Frontier Materials & Technologies, 2022, no. 2, pp. 7–16. doi: 10.18323/2782-4039-2022-2-7-16.
  9. Wen S.-Z., Zhong S.-D., Kan W.-Q., Zhao P.-S., He Y.-C. Experimental and theoretical investigation on the hydrochromic property of Ni(II)-containing coordination polymer with an inclined 2D–3D polycatenation architecture. Journal of Molecular Structure, 2022, vol. 1269, article number 133753. doi: 10.1016/j.molstruc.2022.133753.
  10. Jin L., Cao W., Wang P., Song N., Din P. Interconnected MXene/Graphene network constructed by soft template for multi-performance improvement of polymer composites. Nano-Micro Letters, 2022, vol. 14, no. 1, article number 133. doi: 10.1007/s40820-022-00877-7.
  11. Robertson B.P., Calabrese M.A. Evaporation-controlled dripping-onto-substrate (DoS) extensional rheology of viscoelastic polymer solutions. Scientific Reports, 2022, vol. 12, no. 1, article number 4697. doi: 10.1038/s41598-022-08448-x.
  12. Ivanochkin P.G., Bolshikh I.V., Talakhadze T.Z., Bolshikh E.P. Application of antifriction polymer composite coatings in the brake lever transmission of locomotives. Vestnik Rostovskogo gosudarstvennogo universiteta putey soobshcheniya, 2022, no. 1, pp. 16–22. doi: 10.46973/0201-727X_2022_1_16.
  13. Ivanochkin P.G., Manturov D.S., Danilchenko S.A., Karpenko K.I., Ivanochkina T.A. Study on the effect of the sealers on the steel surface layer modified by electrical discharge machining. Solid State Phenomena, 2021, vol. 316 SSP, pp. 713–719.
  14. Bryanskiy A.A., Bashkov O.V. Identification of acoustic emission sources in a polimer composite material under the cycle tension loading. Vektor nauki Tolyattinskogo gosudarstvennogo universiteta, 2021, no. 3, pp. 19–27. doi: 10.18323/2073-5073-2021-3-19-27.
  15. Saha S., Adachi Y. Shielding behavior of electrokinetic properties of polystyrene latex particle by the adsorption of neutral poly (ethylene oxide). Journal of Colloid and Interface Science, 2022, vol. 626, pp. 930–938. doi: 10.1016/j.jcis.2022.06.154.
  16. Ivanochkin P.G., Suvorova T.V., Danilchenko S.A., Novikov E.S., Complex research of polymer composites with a matrix on the basis of phenilon C-2. Vestnik Rostovskogo gosudarstvennogo universiteta putey soobshcheniya, 2018, no. 4, pp. 18–25. EDN: YTZDWP.
  17. Egghe T., Ghobeira R., Morent R., Hoogenboom R., De Geyter N. Comparative study of the aging behavior of plasma activated hexamethyldisiloxane-based plasma polymers and silicone elastomer thin films. Progress in Organic Coatings, 2022, vol. 172, article number 107091. doi: 10.1016/j.porgcoat.2022.107091.
  18. Hu P., Xie R., Xie Q., Ma C., Zhang G. Simultaneous realization of antifouling, self-healing, and strong substrate adhesion via a bioinspired self-stratification strategy. Chemical Engineering Journal, 2022, vol. 449, article number 137875. doi: 10.1016/j.cej.2022.137875.
  19. Khasyanova D.U., Mukutadze M.A., Zadorozhnaya N.S. Mathematical model for a lubricant in a sliding bearing with a fusible coating in terms of viscosity depending on pressure under an incomplete filling of a working gap. Journal of machinery manufacture and reliability, 2021, vol. 50, no. 5, pp. 405–411. doi: 10.3103/S1052618821050083.
  20. Khasyanova D.U., Mukutadze M.A. Increasing the wear resistance of a radial sliding bearing with a metal coating. Problemy mashinostroeniya i nadezhnosti mashin, 2022, no. 2, pp. 41–46. doi: 10.31857/S0235711922020067.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c)



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies