The influence of severe plastic deformation on mechanical properties of pure zinc

Cover Page

Cite item

Full Text

Abstract

Biodegradable materials, which have the ability to resorb in the body, are new and promising materials for medical implants. Currently, scientists carry out the investigations according to three directions: Mg, Fe, and Zn alloys. Zinc-based alloys and zinc have good solubility in the body, which meets the clinical requirements of implants. However, pure zinc has low mechanical properties, including hardness and tensile strength. Therefore, at present, the world scientific community is seeking ways to improve the properties of pure zinc by alloying. Another known approach is the ultrafine-grained (UFG) structure formation by the severe plastic deformation (SPD) methods, which are based on the large plastic deformations under high pressure and relatively low homologous temperatures. In this work, the authors studied the influence of high pressure torsion of pure zinc with various numbers of revolutions. The paper presents calculations of shear deformation after SPD. The authors investigated the dependence of mechanical properties and microstructure on the deformation degree. Tension tests at room temperature were carried out, and microhardness was measured. The authors studied the structure using scanning electron microscopy and optics. The study identified that the use of high pressure torsion leads to an increase in the tensile strength of pure zinc up to 140 MPa and ductility up to 40 % resulting from dynamic recrystallization.

About the authors

Milena V. Polenok

Ufa State Aviation Technical University, Ufa

Author for correspondence.
Email: renaweiwei.179@mail.ru
ORCID iD: 0000-0001-9774-1689

student of Chair of Materials Science and Physics of Metals

Россия

Elvira D. Khafizova

Ufa State Aviation Technical University, Ufa

Email: ela.90@mail.ru
ORCID iD: 0000-0002-4618-412X

PhD (Engineering), assistant professor of Chair of Materials Science and Physics of Metals

Россия

Rinat K. Islamgaliev

Ufa State Aviation Technical University, Ufa

Email: rinatis@mail.ru
ORCID iD: 0000-0002-6234-7363

Doctor of Sciences (Physics and Mathematics), Professor, professor of Chair of Materials Science and Physics of Metals

Россия

References

  1. Zheng Y., Xu X., Xu Z., Wang J., Cai H. Metallic Biomaterials. New Directions and Technologies. Weinheim, Wiley, 2017. 307 p. doi: 10.1002/9783527342440.
  2. Valiev R.Z., Khafizova E.D. Nanometals for next-generation medical implants. Materials. Technologies. Design, 2021, vol. 3, no. 3, pp. 6–10. doi: 10.54708/26587572_2021_3356.
  3. Li G., Yang H., Zhen Y., Chen X.-H., Yang J.-A., Zhu D., Ruan L., Takashima K. Challenges in the use of zinc and its alloys as biodegradable metals: Perspective from biomechanical compatibility. Acta Biomaterialia, 2019, vol. 97, pp. 23–45. doi: 10.1016/j.actbio.2019.07.038.
  4. Yang H., Jia B., Zhang Z., Qu X., Li G., Lin W., Zhu D., Dai K., Zheng Y. Alloying design of biodegradable zinc as promising bone implants for load-bearing applications. Nature Communications, 2020, vol. 11, no. 1, article number 401. doi: 10.1038/s41467-019-14153-7.
  5. Bowen P.K., Drelich J., Goldman J. Zinc exhibits ideal physiological corrosion behavior for bioabsorbable stents. Advanced Materials, 2013, vol. 25, no. 18, pp. 2577–2582. doi: 10.1002/adma.201300226.
  6. Drelich A.J., Zhao S., Guillory R.J., Drelich J.W., Goldman J. Long-term surveillance of zinc implant in murine artery: Surprisingly steady biocorrosion rate. Acta Biomaterialia, 2017, vol. 58, pp. 539–549. doi: 10.1016/j.actbio.2017.05.045.
  7. Mostaed E., Sikora-Jasinska M., Drelich J.W., Vedani M. Zinc-based alloys for degradable vascular stent applications. Acta Biomaterialia, 2018, vol. 71, pp. 1–23. doi: 10.1016/j.actbio.2018.03.005.
  8. Li H.F., Xie X.H., Zheng Y.F., Cong Y., Zhou F.Y., Qiu K.J., Wang X., Chen S.H., Huang L., Tian L., Qin L. Development of biodegradable Zn-1X binary alloys with nutrient alloying elements Mg, Ca and Sr. Scientific Reports, 2015, vol. 5, article number 10719. doi: 10.1038/srep10719.
  9. Yao C., Wang Z., Tay S.L., Zhu T., Gao W. Effects of Mg on microstructure and corrosion properties of Zn-Mg alloy. Journal of Alloys and Compounds, 2014, vol. 602, pp. 101–107. doi: 10.1016/j.jallcom.2014.03.025.
  10. Vojtěch D., Kubásek J., Šerák J., Novák P. Mechanical and corrosion properties of newly developed biodegradable Zn-based alloys for bonefixation. Acta Biomaterialia, 2011, vol. 7, pp. 3515–3522. doi: 10.1016/j.actbio.2011.05.008.
  11. Edalati K., Bachmaier A., Beloshenko V., Beygelzimer Y., Blank V., Botta W., Bryɫa K., Čižek J., Divinski S., Enikev N., Estrin Yu., Faraji G. Nanomaterials by severe plastic deformation: review of historical developments and recent advances. Materials Research Letters, 2022, vol. 10, no. 4, pp. 163–256. doi: 10.1080/21663831.2022.2029779.
  12. Inoue A. Fabrication and novel properties of nanostructured Al base alloys. Materials Science Engineering A, 1994, vol. 179-180, PART 1, no. 57–61. doi: 10.1016/0921-5093(94)90164-3.
  13. Li Z.G., Smith D.J., Sickafus K. Observations of nanocrystals in thin TbFeCo films. Applied Physics Letters, 1989, vol. 55, no. 9, pp. 919–921. doi: 10.1063/1.101622.
  14. Valiev R.Z., Zhilyaev A.P., Lengdon T.J. Ob’emnye nanostrukturnye materialy: fundamentalnye osnovy i primeneniya [Bulk nanostructured materials: fundamentals and applications]. Saint Petersburg, Eko-Vektor Publ., 2017. 479 p.
  15. Valiev R.Z., Estrin Y., Horita Z., Langdon T., Zehetbauer M., Zhu Y. Producing bulk ultrafine-grained materials by severe plastic deformation. JOM, 2016, vol. 68, no. 4, pp. 1216–1226. doi: 10.1007/s11837-016-1820-6.
  16. Zhang X., Wang H., Scattergood R.O., Narayan J., Koch C.C. Modulated oscillatory hardening and dynamic recrystallization in cryomilled nanocrystalline Zn. Acta Materialia, 2002, vol. 50, no. 16, pp. 3995–4004. doi: 10.1016/S1359-6454(02)00199-4.
  17. Korbel A., Pospiech J., Bochniak W., Tarasek A., Ostachowski P., Bonarski J. New structural and mechanical features of hexagonal materials after room temperature extrusion using the KoBo method. International Journal of Materials Research, 2011, vol. 102, no. 4, pp. 464–473. doi: 10.3139/146.110490.
  18. Valiev R.Z., Aleksandrov I.V. Nanostrukturnye materialy, poluchennye intensivnoy plasticheskoy deformatsiey [Nanostructured materials obtained by severe plastic deformation]. Moscow, Logos Publ., 2000. 272 p.
  19. Trusov P.V., Chechulina E.A. Serrated yielding: crystal viscoplastic models. PNRPU Mechanics Bulletin, 2017, no. 1, pp. 134–163. doi: 10.15593/perm.mech/2017.1.09.
  20. Kirillov A.M., Pluzhnikov S.N., Pluzhnikova T.N., Zinger E.V., Fedorov V.A. Twinning on stress-strain diagrams in polycrystals Fe-Si. Tambov University Reports. Series Natural and Technical Sciences, 2010, vol. 15, no. 3-1, pp. 937–938. EDN: MUHXEX.
  21. Krishtal M.M., Merson D.L. Interrelation between deformation macrolocalization, serrated yielding, and acoustic emission during deformation of aluminum-magnesium alloys. The Physics of Metals and Metallography, 1996, vol. 81, no. 1, pp. 104–109. EDN: LDYDWV.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c)



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies