The selection of interatomic potentials for simulation of extreme actions within the tungsten lattice

Cover Page

Cite item

Full Text

Abstract

Simulation of crystal lattices under conditions far from equilibrium is an increasingly important subject of research and requires confidence in the validity of the applied interatomic potentials in a wide range of atom deviations from the balanced condition. To make such an assessment for modeling tungsten as an advanced material for various nuclear applications, the authors analyzed the nonlinear behavior of the lattice using several interatomic potentials. In a BCC tungsten crystal, oscillations were simulated according to the laws of several delocalized nonlinear vibrational modes – exact solutions to the equations of motion of atoms, the geometry of which is determined by the lattice symmetry at any amplitudes and does not depend on the type of interaction between the nodes. The authors considered two-dimensional cases of oscillations in one of the close-packed planes and three-dimensional cases when the motions of atoms have three components in space for a tungsten cell consisting of 2000 atoms and 31.6×31.6×31.6 Å in size. The amplitude-frequency characteristics of these modes were calculated for several interatomic potentials available in the LAMMPS library. The study identified that several interatomic potentials, namely eam.fs, set, Olsson, and Zhou show practically identical results, which is an indirect confirmation of their validity and the possibility of their use for modeling extreme impacts in the considered lattice. The authors calculated such characteristics of the system as kinetic energy, heat capacity, and pressure. Based on the results obtained, one can assume that mode 15, due to the modulation instability, will lead to the energy localization on individual atoms.

About the authors

Alina Yu. Morkina

Ufa State Aviation Technical University, Ufa

Author for correspondence.
Email: alinamorkina@yandex.ru
ORCID iD: 0000-0002-3989-0376

graduate student

Россия

Ilyas I. Tuvalev

Bashkir State University, Ufa

Email: illumnus102@gmail.com
ORCID iD: 0000-0002-9341-4178

student 

Россия

Sergey V. Dmitriev

Institute of Physics of Molecules and Crystals of Ufa Federal Research Center of the Russian Academy of Sciences, Ufa

Email: dmitriev.sergey.v@gmail.com
ORCID iD: 0000-0002-6744-4445

Doctor of Sciences (Physics and Mathematics), Professor, leading researcher

Россия

Yuri V. Bebikhov

Mirny Polytechnic Institute (branch) of North-Eastern Federal University, Mirny

Email: yura.bebikhov@mail.ru
ORCID iD: 0000-0002-8366-4819

PhD (Physics and Mathematics), Associate Professor

Россия

Aleksandr S. Semenov

Mirny Polytechnic Institute (branch) of North-Eastern Federal University, Mirny

Email: sash-alex@yandex.ru
ORCID iD: 0000-0001-9940-3915

PhD (Physics and Mathematics), Associate Professor

Россия

Yuliya R. Sharapova

Institute for Metals Superplasticity Problems of the RAS, Ufa

Email: ulya_usinsk@mail.ru

laboratory assistant

Россия

References

  1. Marinica M.-C., Ventelon L., Gilbert M., Proville L., Dudarev S.L., Marian J., Bencteux G., Willaime F. Interatomic potentials for modelling radiation defects and dislocations in tungsten. Journal of Physics: Condensed Matter, 2013, vol. 25, no. 39, article number 395502. doi: 10.1088/0953-8984/25/39/395502.
  2. Babicheva R.I., Evazzade I., Korznikova E.A., Shepelev I.A., Zhou K., Dmitriev S.V. Low-energy channel for mass transfer in Pt crystal initiated by molecule impact. Computational Materials Science, 2019, vol. 163, pp. 248–255. doi: 10.1016/j.commatsci.2019.03.022.
  3. Sand A.E., Nordlund K., Dudarev S.L. Radiation damage production in massive cascades initiated by fusion neutrons in tungsten. Journal of Nuclear Materials, 2014, vol. 455, no. 1-3, pp. 207–211. doi: 10.1016/j.jnucmat.2014.06.007.
  4. Chetverikov A.P., Shepelev I.A., Korznikova E.A., Kistanov A.A., Dmitriev S.V., Velarde M. Breathing subsonic crowdion in morse lattices. Computational Condensed Matter, 2017, vol. 13, pp. 59–64. doi: 10.1016/j.cocom.2017.09.004.
  5. Shelepev I.A., Bayazitov A.M., Korznikova E.A. Modeling of supersonic crowdion clusters in FCC lattice: Effect of the interatomic potential. Journal of Micromechanics and Molecular Physics, 2021, vol. 6, no. 1, article number 2050019. doi: 10.1142/S2424913020500198.
  6. Shepelev I.A., Dmitriev S.V., Kudreyko A.A., Velarde M.G., Korznikova E.A. Supersonic voidions in 2D Morse lattice. Chaos, Solitons and Fractals, 2020, vol. 140, article number 110217. doi: 10.1016/j.chaos.2020.110217.
  7. Shepelev I.A., Bachurin D.V., Korznikova E.A., Bayazitov A.M., Dmitriev S.V. Mechanism of remote vacancy emergence by a supersonic crowdion cluster in a 2D Morse lattice. Chinese Journal of Physics, 2021, vol. 70, pp. 355–362. doi: 10.1016/j.cjph.2021.01.010.
  8. Korznikova E., Schafler E., Steiner G., Zehetbauer M. Measurements of vacancy type defects in SPD deformed Ni. Ultrafine grained materials. PA, The Minerals, Metals & Materials Society Publ., 2006, pp. 97–102.
  9. Xu A., Armstrong D.E., Beck C., Moody M.P., Smith G.D., Bagot P.A.J., Roberts S.G. Ion-irradiation induced clustering in W-Re-Ta, W-Re and W-Ta alloys: An atom probe tomography and nanoindentation study. Acta Materialia, 2017, vol. 124, pp. 71–78. doi: 10.1016/j.actamat.2016.10.050.
  10. Yankovskaya U.I., Zakharov P.V. Heat resistance of a Pt crystal reinforced with CNT’s. Materials. Technologies. Design, 2021, vol. 3, no. 4, pp. 64–67. doi: 10.54708/26587572_2021_34664.
  11. Mazilova T.I., Sadanov E.V., Voyevodin V.N., Ksenofontov V.A., Mikhailovskij I.M. Impact-induced concerted mass transport on W surfaces by a voidion mechanism. Surface Science, 2018, vol. 669, pp. 10–15. doi: 10.1016/j.susc.2017.11.002.
  12. Zakharov P.V., Korznikova E.A., Dmitriev S.V., Ekomasov E.G., Zhou K. Surface discrete breathers in Pt3Al intermetallic alloy. Surface Science, 2019, vol. 679, pp. 1–5. doi: 10.1016/j.susc.2018.08.011.
  13. Ryabov D.S., Chechin G.M., Upadhyaya A., Korznikova E.A., Dubinko V.I., Dmitriev S.V. Delocalized nonlinear vibrational modes of triangular lattices. Nonlinear Dynamics, 2020, vol. 102, no. 4, pp. 2793–2810. doi: 10.1007/s11071-020-06015-5.
  14. Evazzade I., Lobzenko I., Korznikova E., Ovid’Ko I., Roknabadi M., Dmitriev S.V. Energy transfer in strained graphene assisted by discrete breathers excited by external ac driving. Physical Review B, 2017, vol. 95, no. 3, article number 035423. doi: 10.1103/PhysRevB.95.035423.
  15. Singh M., Morkina A.Y., Korznikova E.A., Dubinko V.I., Terentiev D.A., Xiong D., Naimark O.B., Gani V.A., Dmitriev S.V. Effect of discrete breathers on the specific heat of a nonlinear chain. Journal of Nonlinear Science, 2021, vol. 31, no. 1, article number 12. doi: 10.1007/s00332-020-09663-4.
  16. Korznikova E.A., Fomin S.Yu., Soboleva E.G., Dmitriev S.V. Highly symmetric discrete breather in a two-dimensional Morse crystal. JETP Letters, 2016, vol. 103, no. 4, pp. 277–281. doi: 10.1134/S0021364016040081.
  17. Chechin G.M., Sakhnenko V.P. Interactions between normal modes in nonlinear dynamical systems with discrete symmetry. Exact results. Physica D: Nonlinear Phenomena, 1998, vol. 117, no. 1-5, pp. 43–76. doi: 10.1016/S0167-2789(98)80012-2.
  18. Han S., Zepeda-Ruiz L.A., Ackland G.J., Car R., Srolovitz D.J. Interatomic potential for vanadium suitable for radiation damage simulations. Journal of Applied Physics, 2003, vol. 93, no. 6, pp. 3328–3335. doi: 10.1063/1.1555275.
  19. Marinica M.-C., Ventelon L., Gilbert M.R., Proville L., Dudarev S.L., Marian J., Bencteux G., Willaime F. Interatomic potentials for modelling radiation defects and dislocations in tungsten. Journal of Physics: Condensed Matter, 2013, vol. 25, no. 39, article number 395502. doi: 10.1088/0953-8984/25/39/395502.
  20. Tadmor E.B., Elliott R.S., Sethna J.P., Miller R.E., Becker C.A. The potential of atomistic simulations and the knowledgebase of interatomic models. JOM, 2011, vol. 63, no. 7, pp. 17. doi: 10.1007/s11837-011-0102-6.
  21. Tadmor E. Finnis-Sinclair potential (LAMMPS cubic hermite tabulation) for W developed by Marinica et al.; Potential EAM4 v000. OpenKIM. 2013. doi: 10.25950/ce93b9c6.
  22. Lee B.-J. Model parameterization of 2NN MEAM model. OpenKIM. 2014. URL: https://openkim.org/cite/MO_145522277939_001.
  23. Olsson P.A. Semi-empirical atomistic study of point defect properties in BCC transition metals. Computational Materials Science, 2009, vol. 47, no. 1, pp. 135–145. doi: 10.1016/j.commatsci.2009.06.025.
  24. Zhou X.W., Johnson R.A., Wadley H.N.G. Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers. Physical Review B - Condensed Matter and Materials Physics, 2004, vol. 69, no. 14, pp. 144113-1-144113-10. doi: 10.1103/PhysRevB.69.144113.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c)



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies