On the compatibility of surgical implants of bioresorbable magnesium alloys with medical devices of titanium alloys

Cover Page

Cite item

Full Text

Abstract

Self-resorbable implants made of magnesium alloys, unlike the traditional implants made of titanium alloys and stainless steels, have the ability to completely dissolve in the human body, which makes it possible to eliminate the need for a recurrent operation to extract them. The issue of the possibility of using magnesium implants in the combination with products made of titanium alloys remains insufficiently studied at the moment. At the same time, it is widely known that the elements such as titanium and iron, with a potential more positive than magnesium, have a disastrous influence on the corrosion of magnesium alloys, since magnesium dissolves much faster due to the galvanic effect. This work is aimed to determine how the distance to a titanium implant affects the corrosion rate of a ZX10 magnesium alloy sample with an ultra-fine grain structure. As it is an issue of medical application, the authors carried out the corrosion tests within the conditions simulating the human body conditions: the corrosion medium circulation and keeping temperature within 37±1 °C. The authors used physiological solution as a corrosion medium. During corrosion testing, a titanium implant was placed in three, six, and twelve centimeters from the magnesium alloy sample; and the control tests were also carried out without a titanium implant. According to the obtained data, at a distance of 3 cm, the galvanic effect between titanium and magnesium manifests itself strongly, increasing the corrosion rate and the size of corrosion damage, but at a distance of 6 cm, the titanium implant does not have a visible effect on the corrosion of a sample.

About the authors

Pavel N. Myagkikh

Togliatti State University, Togliatti

Author for correspondence.
Email: feanorhao@gmail.com
ORCID iD: 0000-0002-7530-9518

junior researcher of the Research Institute of Advanced Technologies

Россия

Evgeny D. Merson

Togliatti State University, Togliatti

Email: mersoned@gmail.com
ORCID iD: 0000-0002-7063-088X

PhD (Physics and Mathematics), senior researcher of the Research Institute of Advanced Technologies

Россия

Vitaly A. Poluyanov

Togliatti State University, Togliatti

Email: vitaliy.poluyanov@gmail.com
ORCID iD: 0000-0002-0570-2584

PhD (Engineering), junior researcher of the Research Institute of Advanced Technologies

Россия

Dmitry L. Merson

Togliatti State University, Togliatti

Email: D.Merson@tltsu.ru
ORCID iD: 0000-0001-5006-4115

Doctor of Sciences (Physics and Mathematics), Professor, Director of the Research Institute of Advanced Technologies

Россия

Marina E. Begun

Togliatti State University, Togliatti

Email: feanorhao@gmail.com

student, a technician of the Research Institute of Advanced Technologies

Россия

References

  1. Prakasam M., Locs J., Salma-Ancane K., Loca D., Largeteau A., Berzina-Cimdina L. Biodegradable materials and metallic implants-A review. Journal of Functional Biomaterials, 2017, vol. 8, no. 4, article number 44. doi: 10.3390/jfb8040044.
  2. Antoniac I., Popescu D., Zapciu A., Antoniac A., Miculescu F., Moldovan H. Magnesium filled polylactic acid (PLA) material for filament based 3D printing. Materials, 2019, vol. 12, no. 5, article number 719. doi: 10.3390/ma12050719.
  3. Knaack D., Goad M.E.P., Aiolova M., Rey C., Tofighi A., Chakravarthy P., Lee D.D. Resorbable calcium phosphate bone substitute. Journal of Biomedical Materials Research, 1998, vol. 43, no. 4, pp. 399–409. doi: 10.1002/(SICI)1097-4636(199824)43:4<399::AID-JBM7>3.0.CO;2-J.
  4. Teramoto H., Kawai A., Sugihara S., Yoshida A., Inoue H. Resorption of Apatite-wollastonite containing glass-ceramic and β-tricalcium phosphate in vivo. Acta Medica Okayama, 2005, vol. 59, no. 5, pp. 201–207. doi: 10.18926/AMO/31974.
  5. Poinern G.E.J., Brundavanam S., Fawcett D. Biomedical Magnesium Alloys: A Review of Material Properties, Surface Modifications and Potential as a Biodegradable Orthopaedic Implant. American Journal of Biomedical Engineering, 2021, vol. 2, no. 6, pp. 218–240. doi: 10.5923/j.ajbe.20120206.02.
  6. Levy G.K., Goldman J., Aghion E. The Prospects of Zinc as a Structural Material for Biodegradable Implants–A Review Paper. Metals, 2017, vol. 7, no. 10, article number 402. doi: 10.3390/met7100402.
  7. Schinhammer M., Hänzi A.C., Löffler J.F., Uggowitzer P.J. Design strategy for biodegradable Fe-based alloys for medical applications. Acta Biomaterialia, 2010, vol. 6, no. 5, pp. 1705–1713. doi: 10.1016/j.actbio.2009.07.039.
  8. Merson D., Brilevsky A., Myagkikh P., Tarkova A., Prokhorikhin A., Kretov E., Frolova T., Vinogradov A. The functional properties of Mg-Zn-X biodegradable magnesium alloys. Materials, 2020, vol. 13, no. 3, article number 544. doi: 10.3390/ma13030544.
  9. Merson D.L., Brilevsky A.I., Myagkikh P.N., Markushev M.V., Vinogradov A. Effect of deformation processing of the dilute Mg-1Zn-0.2Ca alloy on the mechanical properties and corrosion rate in a simulated body fluid. Letters on Materials, 2020, vol. 10, no. 2, pp. 217–222. doi: 10.22226/2410-3535-2020-2-217-222.
  10. Tian L., Sheng Y., Huang L., Chow D.H.K., Chau W.H., Tang N., Ngai T., Wu C., Lu J., Qin L. An innovative Mg/Ti hybrid fixation system developed for fracture fixation and healing enhancement at load-bearing skeletal site. Biomaterials, 2018, vol. 180, pp. 173–183. doi: 10.1016/j.biomaterials.2018.07.018.
  11. Myagkikh P.N., Merson E.D., Poluyanov V.A., Merson D.L. In-situ study of corrosion process of biodegradable magnesium alloys. Vektor nauki Tolyattinskogo gosudarstvennogo universiteta, 2021, no. 2, pp. 18–25. doi: 10.18323/2073-5073-2021-2-18-25.
  12. Myagkikh P.N., Merson E.D., Poluyanov V.A., Merson D.L. Kinetics and evolution of corrosion failure of pure magnesium with various grain size: in-situ study. Materials. Technologies. Design, 2022, vol. 4, no. 1, pp. 39–47. doi: 10.54708/26587572_2022_41739.
  13. Song G. Control of biodegradation of biocompatable magnesium alloys. Corrosion Science, 2007, vol. 49, no. 4, pp. 1696–1701. doi: 10.1016/j.corsci.2007.01.001.
  14. Xin Y., Liu C., Zhang X., Tang G., Tian X., Chu P.K. Corrosion behavior of biomedical AZ91 magnesium alloy in simulated body fluids. Journal of Materials Research, 2007, vol. 22, no. 7, pp. 2004–2011. doi: 10.1557/jmr.2007.0233.
  15. Li K.K., Wang B., Yan B., Lu W. Preparing Ca-P coating on biodegradable magnesium alloy by hydrothermal method: In vitro degradation behavior. Chinese Science Bulletin, 2012, vol. 57, no. 18, pp. 2319–2322. doi: 10.1007/s11434-012-5067-5.
  16. Li L.Y., Liu B., Zeng R.C., Li S.Q., Zhang F., Zou Y.H., Jiang H.G., Chen X.B., Guan S.K., Liu Q.Y. In vitro corrosion of magnesium alloy AZ31 - a synergetic influence of glucose and Tris. Frontiers of Materials Science, 2018, vol. 12, no. 2, pp. 184–197. doi: 10.1007/s11706-018-0424-1.
  17. Makkar P., Sarkar S.K., Padalhin A.R., Moon B.G., Lee Y.S., Lee B.T. In vitro and in vivo assessment of biomedical Mg–Ca alloys for bone implant applications. Journal of Applied Biomaterials and Functional Materials, 2018, vol. 16, no. 3, pp. 126–136. doi: 10.1177/2280800017750359.
  18. Liu M., Qiu D., Zhao M.C., Song G., Atrens A. The effect of crystallographic orientation on the active corrosion of pure magnesium. Scripta Materialia, 2008, vol. 58, no. 5, pp. 421–424. doi: 10.1016/j.scriptamat.2007.10.027.
  19. Zhang X., Ba Z., Wang Q., Wu Y., Wang Z., Wang Q. Uniform corrosion behavior of GZ51K alloy with long period stacking ordered structure for biomedical application. Corrosion Science, 2014, vol. 88, pp. 1–5. doi: 10.1016/j.corsci.2014.07.004.
  20. Pogorielov M., Husak E., Solodivnik A., Zhdanov S. Magnesium-based biodegradable alloys: Degradation, application, and alloying elements. Interventional Medicine and Applied Science, 2017, vol. 9, no. 1, pp. 27–38. doi: 10.1556/1646.9.2017.1.04.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c)



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies