The mechanical properties, electrical conductivity, and thermal stability of a wire made of Al–Fe alloys produced by casting into an electromagnetic crystallizer

Cover Page

Cite item

Full Text

Abstract

The development and production of new aluminum-based materials is a critical task of the up-to-date industry. Particularly, new materials are necessary to produce light, strong, and thermally-stable wires and cables for household usage, transport, and power sphere. The paper presents the results of the study of the microstructure and physical and mechanical properties of Al–0.5Fe and Al–1.7Fe alloys (wt. %), produced by continuous casting into an electromagnetic crystallizer (EMC). The authors carried out a comparative analysis of alloys under the study and commercial alloys. During this analysis, the authors produced a wire with the diameter of 3 mm from the primary cast blanks by the cold drawing method (CD). The microstructure analysis showed that as a result of casting into an electromagnetic crystallizer, the particles of metastable modification Al2Fe phase appear during the crystallization process that have sizes close to the nanometric range. The use of the cold drawing method led to the substructure formation in both alloys and the refinement of intermetallic particles, which ensured the significant hardening of alloy specimens. After cold drawing, the intermetallic particles were grinded and distributed along the boundaries of grains/sub-grains. The ultimate tensile strength of the Al–0.5Fe alloy was 204 MPa, while in the Al–1.7Fe alloy, it reached 295 MPa. The electrical conductivity level of the Al–0.5Fe and Al–1.7Fe alloys wire was 58.4 and 52.0 % IACS, respectively. The study showed that the Al–Fe alloys wire with ferrum concentration of up to 1.7 wt. % demonstrated thermal stability at the level of thermally-stable Al–Zr and Al–REM conductive alloys.

About the authors

Andrey E. Medvedev

Ufa State Aviation Technical University, Ufa

Author for correspondence.
Email: medvedev.ae@ugatu.su
ORCID iD: 0000-0002-8616-0042

PhD (Physics and Mathematics), junior researcher

Россия

Olga O. Zhukova

Ufa State Aviation Technical University, Ufa

Email: olga.zhukova96@mail.ru
ORCID iD: 0000-0002-1879-9389

postgraduate student of Chair of Materials Science and Materials Technology

Россия

Darya D. Fedotova

Ufa State Aviation Technical University, Ufa

Email: dariafedotowa@mail.ru

bachelor of Chair of Materials Science and Materials Technology

Россия

Maksim Yu. Murashkin

Ufa State Aviation Technical University, Ufa

Email: maksim.murashkin.70@yandex.ru
ORCID iD: 0000-0001-9950-0336

PhD (Engineering), senior researcher

Россия

References

  1. Shikagawa T., Itoh G., Suzuki S., Kuroda H., Horikoshi T. Effect of small additions of Fe on the tensile properties and electrical conductivity of aluminium wires. Materials Science Forum, 2016, vol. 519-521, pp. 515–518. doi: 10.4028/ href='www.scientific.net/msf.519-521.515' target='_blank'>www.scientific.net/msf.519-521.515.
  2. Cubero-Sesin J.M., Horita Z. Age Hardening in Ultrafine-Grained Al-2PctFe Alloy Processed by High-Pressure Torsion. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2015, vol. 46, no. 6, pp. 2614–2624. doi: 10.1007/s11661-015-2876-6.
  3. Cubero-Sesin J.M., In H., Arita M., Iwaoka H., Horita Z. High-pressure torsion for fabrication of high-strength and high-electrical conductivity Al micro-wires. Journal of Materials Science, 2014, vol. 49, no. 19, pp. 6550–6557. doi: 10.1007/s10853-014-8240-1.
  4. Cai S.L., Wan J.C., Hao Y.J., Koch C.C. Dual gradient microstructure to simultaneously improve strength and electrical conductivity of aluminum wire. Materials Science and Engineering A, 2020, vol. 783, article number 139308. doi: 10.1016/j.msea.2020.139308.
  5. Hou J.P., Li R., Wang Q., Yu H.Y., Zhang Z.J., Chen Q.Y., Ma H., Li X.W., Zhang Z.F. Origin of abnormal strength-electrical conductivity relation for an Al–Fe alloy wire. Materialia, 2019, vol. 7, article number 100403. doi: 10.1016/j.mtla.2019.100403.
  6. Zhu Y.K., Chen Q.Y., Wang Q., Yu H.Y., Li R., Hou J.P., Zhang Z.J., Zhang G.P., Zhang Z.F. Effect of stress profile on microstructure evolution of cold-drawn commercially pure aluminum wire analyzed by finite element simulation. Journal of Materials Science and Technology, 2019, vol. 34, no. 7, pp. 1214–1221. doi: 10.1016/j.jmst.2017.07.011.
  7. Jablonski M., Knych T., Smyrak B. New aluminium alloys for electrical wires of fine diameter for automotive industry. Archives of Metallurgy and Materials, 2009, vol. 54, no. 3, pp. 671–676.
  8. Zhang J., Ma M., Shen F., Yi D., Wang B. Influence of deformation and annealing on electrical conductivity, mechanical properties and texture of Al-Mg-Si alloy cables. Materials Science and Engineering A, 2018, vol. 710, pp. 27–37. doi: 10.1016/j.msea.2017.10.065.
  9. Rochet C., Andrieu E., Arfaei B., Harouard J.-P., Laurino A., Lowe T.C., Odemer G., Blanc C. Influence of equal-channel angular pressing on the corrosion fatigue behaviour of an Al-Mg-Si aluminium alloy for automotive conductors. International Journal of Fatigue, 2020, vol. 140, article number 105812. doi: 10.1016/j.ijfatigue.2020.105812.
  10. Valiev R.Z., Murashkin M., Sabirov I. A nanostructural design to produce high-strength Al alloys with enhanced electrical conductivity. Scripta Materialia, 2014, vol. 76, pp. 13–16. doi: 10.1016/j.scriptamat.2013.12.002.
  11. Belov N., Murashkin M., Korotkova N., Akopyan T., Timofeev V. Structure and properties of Al-0.6 Wt.%Zr wire alloy manufactured by direct drawing of electromagnetically cast wire rod. Metals, 2020, vol. 10, no. 6, pp. 1–11, article number 769. doi: 10.3390/met10060769.
  12. Belov N., Akopyan T., Korotkova N., Murashkin M., Timofeev V., Fortuna A. Structure and properties of Ca and Zr containing heat resistant wire aluminum alloy manufactured by electromagnetic casting. Metals, 2021, vol. 11, no. 2, pp. 1–15, article number 236. doi: 10.3390/met11020236.
  13. Korotkova N.O., Belov N.A., Timofeev V.N., Motkov M.M., Cherkasov S.O. Influence of Heat Treatment on the Structure and Properties of an Al-7% REM Conductive Aluminum Alloy Casted in an Electromagnetic Crystallizer. Physics of Metals and Metallography, 2020, vol. 121, no. 2, pp. 173–179. doi: 10.1134/S0031918X2002009X.
  14. Ding H., Xiao Y., Bian Z., Wu Y., Yang H., Wang H., Wang H. Design, microstructure, and thermal stability of a novel heat-resistant Al-Fe-Ni alloy manufactured by selective laser melting. Journal of Alloys and Compounds, 2021, vol. 885, article number 160949. doi: 10.1016/j.jallcom.2021.160949.
  15. Bian Z., Dai S., Wu L., Chen Z., Wang M., Chen D., Wang H. Thermal stability of Al–Fe–Ni alloy at high temperatures. Journal of Materials Research and Technology, 2019, vol. 8, no. 3, pp. 2538–2548. doi: 10.1016/j.jmrt.2019.01.028.
  16. Valiev R.Z., Aleksandrov I.V. Ob’emnye nanostrukturnye metallicheskie materialy: poluchenie, struktura i svoystva [Bulk nanostructured metallic materials: preparation, structure and properties]. Moscow, Akademkniga Publ., 2007. 398 p.
  17. Medvedev A., Murashkin M., Enikeev N., Medvedev E., Sauvage X. Influence of morphology of intermetallic particles on the microstructure and properties evolution in severely deformed Al-Fe alloys. Metals, 2021, vol. 11. no. 5, article number 815. doi: 10.3390/met11050815.
  18. Magomedova D.K. Influence of Al 6101 alloy structure on pore formation in static tension as a structural change during deformation. Materials. Technologies. Design, 2022, vol. 4, no. 1, pp. 24–29. doi: 10.54708/26587572_2022_41724.
  19. Medvedev A.E., Murashkin M.Y., Enikeev N.A., Valiev R.Z., Hodgson P.D., Lapovok R. Optimization of Strength-Electrical Conductivity Properties in Al-2Fe Alloy by Severe Plastic Deformation and Heat Treatment. Advanced Engineering Materials, 2017, vol. 20, no. 3, article number 1700867. doi: 10.1002/adem.201700867.
  20. Mondolfo L.F., Zmeskal O. Engineering metallurgy. New York, McGraw-Hill, 1955. 397 p.
  21. Medvedev A.E., Arutunyan A., Lomakin I., Bondarenko A., Kazykhanov V., Enikeev N., Raab G., Murashkin M. Fatigue properties of ultra-fine grained Al-Mg-Si wires with enhanced mechanical strength and electrical conductivity. Metals, 2018, vol. 8, no. 12, article number 1034. doi: 10.3390/met8121034.
  22. Murashkin M.Yu., Sabirov I., Sauvage X., Valiev R.Z. Nanostructured Al and Cu alloys with superior strength and electrical conductivity. Journal of Materials Science, 2016, vol. 51, no. 1, pp. 33–49. doi: 10.1007/s10853-015-9354-9.
  23. Medvedev A.E., Murashkin M.Yu., Enikeev N.A., Bikmukhametov I., Valiev R.Z., Hodgson P.D., Lapovok R. Effect of the eutectic Al-(Ce,La) phase morphology on microstructure, mechanical properties, electrical conductivity and heat resistance of Al-4.5(Ce,La) alloy after SPD and subsequent annealing. Journal of Alloys and Compounds, 2019, vol. 796, pp. 321–330. doi: 10.1016/j.jallcom.2019.05.006.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c)



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies