Simulation of overcoming obstacles in the form of pores by dislocations in tungsten

Cover Page

Cite item

Full Text

Abstract

Tungsten is widely used as a material capable of withstanding working conditions in nuclear reactors and other extreme conditions. Under the influence of irradiation, such defects as Frenkel pairs, pores, and dislocation loops are formed in the metal. Therefore, the research aimed at studying the interactions of these defects with each other and their influence on the mechanical properties of the metal are relevant. The paper presents the theoretical study based on the molecular dynamics method, the purpose of which is to investigate the mechanism of strain hardening of tungsten associated with the interaction of dislocations and pores. The authors solved this problem using the LAMMPS package, carried out the integration of atoms motion equations by the fourth order Verlet method. The model under the study is a single crystal of a certain [111], [–1–12], [1–10] orientation along the basic X, Y, and Z coordinate axis relatively, in which the slip of edge dislocations in the main slip system of BCC metals and their interaction with pores is considered. The authors studied the influence of a pore size on the shear stress magnitude: the growth of pore diameter is proportional to the stress growth. The dependences of shear stress on the shear strain in the temperature range of 600–1400 K are calculated, whereby the temperature change does not significantly influence the stress value. The study shows that dislocations cut the pores and, upon the repeated interaction with a pore, a lower value of peak shear stress is observed than during the first one. The presence of pores leads to the flow stress increase, and such an effect becomes more evident with the increasing pore diameter. The flow stress increases thrice for pores with a diameter of 6 nm compared to the material without pores. The authors described the mechanism of interaction between the edge dislocations and pores under the influence of shear stress.

About the authors

Arseny M. Kazakov

Ufa State Aviation Technical University, Ufa

Author for correspondence.
Email: arseny.m.kazakov@gmail.com
ORCID iD: 0000-0002-8278-8705

student

Russian Federation

Yuliya R. Sharapova

Ufa State Aviation Technical University, Ufa

Email: ulya_usinsk@mail.ru

researcher

Russian Federation

Rita I. Babicheva

Nanyang Technological University, Singapore

Email: ri.babicheva@mail.ru
ORCID iD: 0000-0001-5388-3466

PhD (Physics and Mathematics), researcher of the School of Mechanical and Aerospace Engineering

Singapore

Alexandr V. Zinovev

SCK-CEN (Belgian Nuclear Research Centre), Mol

Email: aleksandr.zinovev@sckcen.be
ORCID iD: 0000-0002-1332-5125

PhD (Physics and Mathematics), researcher

Belgium

Dmitry A. Terentyev

SCK-CEN (Belgian Nuclear Research Centre), Mol

Email: dmitry.terentyev@sckcen.be

PhD (Physics and Mathematics), researcher

Belgium

Alexandr S. Semenov

Mirny Polytechnic Institute (branch) of North-Eastern Federal University, Mirny

Email: sash-alex@yandex.ru
ORCID iD: 0000-0001-9940-3915

PhD (Physics and Mathematics), Associate Professor

Russian Federation

References

  1. Golubeva A.V., Cherkez D.I. Hydrogen retention in doped tungsten materials developed for fusion (review). Voprosy atomnoy nauki i tekhniki. Seriya: Termoyadernyy sintez, 2018, vol. 41, no. 4, pp. 26–37. doi: 10.21517/0202-3822-2018-41-4-26-37.
  2. Khripunov B.I., Koydan V.S., Ryazanov A.I., Gureev V.M., Kornienko S.N., Latushkin S.T., Muksunov A.M., Semenov E.V., Stolyarova V.G., Unezhev V.N. Radiation-damaged tungsten: production and study under steady-state plasma flux. Voprosy atomnoy nauki i tekhniki. Seriya: Termoyadernyy sintez, 2017, vol. 40, no. 4, pp. 40–49. doi: 10.21517/0202-3822-2017-40-4-40-49.
  3. Ipatova I., Harrison R.W., Donnelly S.E., Rushton M.J.D., Middleburgh S.C., Jimenez-Melero E. Void evolution in tungsten and tungsten-5wt.% tantalum under in-situ proton irradiation at 800 and 1000 °C. Journal of Nuclear Materials, 2019, vol. 526, article number 151730. doi: 10.1016/j.jnucmat.2019.07.030.
  4. Masters B.C. Dislocation loops in irradiated iron. Philosophical Magazine, 1965, vol. 11, no. 113, pp. 881–893. doi: 10.1080/14786436508223952.
  5. Muroga T., Watanabe H., Yoshida N. Correlation of fast neutron, fusion neutron and electron irradiations based on the dislocation loop density. Journal of Nuclear Materials, 1990, vol. 174, no. 2-3, pp. 282–288. doi: 10.1016/0022-3115(90)90241-E.
  6. Jumel S., Van Duysen J.-C., Ruste J., Domain C. Interactions between dislocations and irradiation-induced defects in light water reactor pressure vessel steels. Journal of Nuclear Materials, 2005, vol. 346, no. 2-3, pp. 79–97. doi: 10.1016/j.jnucmat.2005.04.065.
  7. Rong Z., Osetsky Y.N., Bacon D.J. A model for the dynamics of loop drag by a gliding dislocation. Philosophical Magazine, 2005, vol. 85, no. 14, pp. 1473–1493. doi: 10.1080/14786430500036371.
  8. Osetsky Yu.N. Atomic-scale mechanisms of void strengthening in tungsten. Tungsten, 2021, vol. 3, no. 1, pp. 65–71. doi: 10.1007/s42864-020-00070-6.
  9. Gerold V. Precipitation Hardening; Dislocations in Solids. Amsterdam, North-Holland Publishing Company Publ., 1979. Vol. 4, 219 p.
  10. Shelepev I.A., Bayazitov A.M., Korznikova E.A. Modeling of supersonic crowdion clusters in FCC lattice: Effect of the interatomic potential. Journal of Micromechanics and Molecular Physics, 2021, vol. 6, no. 1, article number 2050019. doi: 10.1142/S2424913020500198.
  11. Kolesnikov I.D., Shepelev I.A. Excitation and propagation of 1-crowdion in bcc niobium lattice. Materials. Technologies. Design, 2022, vol. 4, no. 1, pp. 5–10. doi: 10.54708/26587572_2022_4175.
  12. Chetverikov A.P., Shepelev I.A., Korznikova E.A., Kistanov A.A., Dmitriev S.V., Velarde M.G. Breathing subsonic crowdion in Morse lattices. Computational Condensed Matter, 2017, vol. 13, pp. 59–64. doi: 10.1016/j.cocom.2017.09.004.
  13. Yankovskaya U.I., Zakharov P.V. Heat resistance of a Pt crystal reinforced with CNT’s. Materials. Technologies. Design, 2021, vol. 3, no. 4, pp. 64–67. doi: 10.54708/26587572_2021_34664.
  14. Chen H.-Y., Tsou N.-T. The Analysis of Thermal-Induced Phase Transformation andMicrostructural Evolution in Ni-Ti Based Shape Memory Alloys By Molecular Dynamics. CMES - Computer Modeling in Engineering and Sciences, 2019, vol. 120, no. 2, pp. 319–332. doi: 10.32604/cmes.2019.06447.
  15. Yoon T., Kang S., Kang T.Y., Kim T.-S. Detection of Graphene Cracks By Electromagnetic Induction, Insensitive to Doping Level. CMES - Computer Modeling in Engineering and Sciences, 2019, vol. 120, no. 2, pp. 351–361. doi: 10.32604/cmes.2019.06672.
  16. Daw M.S., Foiles S.M., Baskes M.I. The embedded-atom method: a review of theory and applications. Materials Science Reports, 1993, vol. 9, no. 7-8, pp. 251–310. doi: 10.1016/0920-2307(93)90001-U.
  17. Osetsky Yu.N., Bacon D.J. An atomic-level model for studying the dynamics of edge dislocations in metals. Modelling and Simulation in Materials Science and Engineering, 2003, vol. 11, no. 4, pp. 427–440. doi: 10.1088/0965-0393/11/4/302.
  18. Bonny G., Terentyev D., Elena J., Zinovev A., Minov B., Zhurkin E.E. Assessment of hardening due to dislocation loops in bcc iron: Overview and analysis of atomistic simulations for edge dislocations. Journal of Nuclear Materials, 2016, vol. 473, pp. 283–289. doi: 10.1016/j.jnucmat.2016.02.031.
  19. Zhou X.W., Johnson R.A., Wadley H.N.G. Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers. Physical Review B - Condensed Matter and Materials Physics, 2004, vol. 69, no. 14, article number 144113. doi: 10.1103/physrevb.69.144113.
  20. Shepelev I.A., Dmitriev S.V., Kudreyko A.A., Velarde M.G., Korznikova E.A. Supersonic voidions in 2D Morse lattice. Chaos, Solitons & Fractals, 2020, vol. 140, article number 110217. doi: 10.1016/j.chaos.2020.110217.
  21. Shepelev I.A., Korznikova E.A., Bachurin D.V., Semenov A.S., Chetverikov A.P., Dmitriev S.V. Supersonic crowdion clusters in 2D Morse lattice. Physics Letters, Section A: General, Atomic and Solid State Physics, 2020, vol. 384, no. 1, article number 126032. doi: 10.1016/j.physleta.2019.126032.
  22. Babicheva R.I., Evazzade I., Korznikova E.A., Shepelev I.A., Zhou K., Dmitriev S.V. Low-energy channel for mass transfer in Pt crystal initiated by molecule impact. Computational Materials Science, 2019, vol. 163, pp. 248–255. doi: 10.1016/j.commatsci.2019.03.022.
  23. Shepelev I.A., Bachurin D.V., Korznikova E.A., Bayazitov A.M., Dmitriev S.V. Mechanism of remote vacancy emergence by a supersonic crowdion cluster in a 2D Morse lattice. Chinese Journal of Physics, 2021, vol. 70, pp. 355–362. doi: 10.1016/j.cjph.2021.01.010.
  24. Moradi Marjaneh A.M., Saadatmand D., Evazzade I., Babicheva R., Soboleva E.G., Srikanth N., Zhou K., Korznikova E.A., Dmitriev S.V. Mass transfer in the Frenkel-Kontorova chain initiated by molecule impact. Physical Review E, 2018, vol. 98, no. 2, article number 023003. doi: 10.1103/PhysRevE.98.023003.
  25. Singh M., Morkina A.Y., Korznikova E.A., Dubinko V.I., Terentiev D.A., Xiong D., Naimark O.B., Gani V.A., Dmitriev S.V. Effect of discrete breathers on the specific heat of a nonlinear chain. Journal of Nonlinear Science, 2021, vol. 31, no. 1, article number 12. doi: 10.1007/s00332-020-09663-4.
  26. Korznikova E., Shunaev V.V., Shepelev I.A., Glukhova O.E., Dmitriev S.V. Ab initio study of the propagation of a supersonic 2-crowdion in fcc Al. Computational Materials Science, 2022, vol. 204, article number 111125. doi: 10.1016/j.commatsci.2021.111125.
  27. Terentyev D., Malerba L., Bacon D.J., Osetsky Yu.N. The effect of temperature and strain rate on the interaction between an edge dislocation and an interstitial dislocation loop in α-iron. Journal of Physics: Condensed Matter, 2007, vol. 19, no. 45, article number 456211. doi: 10.1088/0953-8984/19/45/456211.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c)



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies