The influence of aging on microhardness and electrical conductivity of Cu–2 wt. % Be alloy

Cover Page

Cite item

Full Text

Abstract

Goods made of beryllium bronzes got widespread use in the industry due to the complex of properties: high heat conductivity, strength, hardness, wear resistance, and corrosion resistance. They are not magnesium-based and do not spark on impact; therefore, they are essential for the production of non-sparking tools. The alloys of this system are used in the electrical engineering industry; consequently, it is necessary to pay attention to the improvement of the material’s electrical conductivity. The paper studies the microstructure, microhardness, and electrical conductivity of the Cu–2 wt.% Be alloy exposed to high-pressure torsion (HPT). The authors investigated the microstructure and fine structure of the alloy in various states. The study showed that HPT leads to the formation of an ultrafine-grained nanostructured (UFG NS) state with an average size of grains/subgrains of 22±1 mmn. Additional ageing of samples after HPD led to a slight increase in the grains/subgrains size up to 31±1 mmn. In both states, the authors observed nanosized deformation twins. The authors studied the dependences of microhardness and electrical conductivity of the alloy after HPD on the time of further ageing. The study identified that the microhardness increases from 122±3 HV in the initial state up to 525±8 HV after HPD and ageing. The investigation shows that the electrical conductivity substantially better recovers after ageing of the UFG NS state compared to the initial state. The electrical conductivity of the UFG NS state increased from 14.5±0.1 % IACS up to 27.5±0.6 % IACS in conditions similar to the initial state ageing. Therefore, resulting from such processing, the Cu–2 wt.% Be alloy is characterized by its advanced strength properties and electrical conductivity.

About the authors

Liliya I. Zaynullina

Ufa State Aviation Technical University, Ufa

Author for correspondence.
Email: ZaynullinaLI@yandex.ru
ORCID iD: 0000-0001-6116-1535

senior lecturer of Chair of Materials Science and Physics of Metals

Russian Federation

Elena A. Sarkeeva

Ufa State Aviation Technical University, Ufa

Email: Sarkeeva.e@inbox.ru
ORCID iD: 0000-0002-0357-8161

senior lecturer of Chair of Materials Science and Physics of Metals

Russian Federation

Igor V. Alexandrov

Ufa State Aviation Technical University, Ufa

Email: igorvalexandrov@yandex.ru
ORCID iD: 0000-0002-4789-4713

Doctor of Sciences (Physics and Mathematics), Professor, professor of Chair of Materials Science and Physics of Metals

Russian Federation

Ruslan Z. Valiev

Ufa State Aviation Technical University, Ufa

Email: valiev.rz@ugatu.su
ORCID iD: 0000-0003-4340-4067

Doctor of Sciences (Physics and Mathematics), Professor, professor of Chair of Materials Science and Physics of Metals

Russian Federation

References

  1. Montecinos S., Tognana S., Gonzalez C., Salgueiro W. Influence of the load on the elastic modulus determined from nanoindentation measurements in a Cu-2Be alloy with different microstructures. Engineering Research Express, 2021, vol. 3, article number 035025. doi: 10.1088/2631-8695/ac1a5b.
  2. Zinkle S.J. Evaluation of high strength, high conductivity CuNiBe alloys for fusion energy applications. Journal of Nuclear Materials, 2014, vol. 449, no. 1-3, pp. 277–289. doi: 10.1016/j.jnucmat.2013.09.007.
  3. Zhou Y.J., Song K.X., Xing J.D., Zhang Y.M. Precipitation behavior and properties of aged Cu-0.23Be-0.84Co alloy. Journal of Alloys and Compounds, 2016, vol. 658, pp. 920–930. doi: 10.1016/j.jallcom.2015.10.290.
  4. Mysik R.K., Loginov Yu.N., Sulitsin A.V. Lit’e i obrabotka bronz so spetsialnymi svoystvami [Casting and processing of bronzes with special properties]. Ekaterinburg, UGTU Publ., 2008. 312 p. EDN: VRKUKV.
  5. Jen K.P., Xu L., Hylinski S., Gildersleeve N. Over-aging effect on fracture toughness of beryllium copper alloy C17200. Journal of Materials Engineering and Performance, 2008, vol. 17, no. 5, pp. 714–724. doi: 10.1007/s11665-007-9193-1.
  6. Khachaturyan A.G., Laughlin D.E. Structural transformations during decomposition in CuBe alloys. Acta Metallurgica Et Materialia, 1990, vol. 38, no. 10, pp. 1823–1835. doi: 10.1016/0956-7151(90)90294-Q.
  7. Koo Y.M., Cohen J.B. The structure of GP zones in Cu-10.9 at.% Be. Acta metallurgica, 1989, vol. 37, no. 5, pp. 1295–1306. doi: 10.1016/0001-6160(89)90159-4.
  8. Zhang H., Jiang Y., Xie J., Li Y., Yue L. Precipitation behavior, microstructure and properties of aged Cu-1.7 wt% Be alloy. Journal of Alloys and Compounds, 2019, vol. 773, pp. 1121–1130. doi: 10.1016/j.jallcom.2018.09.296.
  9. Zhang W., Zhao Z., Fang J., He P., Chao Z., Gong D., Chen G., Jiang L. Evolution and strengthening mechanism of metastable precipitates in Cu-2.0 wt% Be alloy. Journal of Alloys and Compounds, 2021, vol. 857, article number 157601. doi: 10.1016/j.jallcom.2020.157601.
  10. Valiev R.Z., Islamgaliev R.K., Alexandrov I.V. Bulk nanostructured materials from severe plastic deformation. Progress in Materials Science, 2000, vol. 45, no. 2, pp. 103–189. doi: 10.1016/S0079-6425(99)00007-9.
  11. Murashkin M.Y., Sabirov I., Sauvage X., Valiev R.Z. Nanostructured Al and Cu alloys with superior strength and electrical conductivity. Journal of Materials Science, 2016, vol. 51, no. 1, pp. 33–49. doi: 10.1007/s10853-015-9354-9.
  12. Sabirov I., Enikeev N., Murashkin M., Valiev R. Bulk Nanostructured Materials with Multifunctional Properties. Springer, 2015. 118 p. doi: 10.1007/978-3-319-19599-5.
  13. Lomakin I., Castillo-Rodriguez M., Sauvage X. Microstructure, mechanical properties and aging behaviour of nanocrystalline copper-beryllium alloy. Materials Science and Engineering A, 2019, vol. 744, pp. 206–214. doi: 10.1016/j.msea.2018.12.011.
  14. Lomakin I., Nigmatullina A., Sauvage X. Mechanism of large strain accommodation assisted by shear localization in a precipitation-hardened Cu–Be alloy. Materials Science and Engineering A, 2021, vol. 823, article number 141760. doi: 10.1016/j.msea.2021.141760.
  15. Tang Y.Ch., Kang Y.L., Yue L.J., Xiao-Liang J. Precipitation behavior of Cu-1.9Be-0.3Ni-0.15Co alloy during aging. Acta Metallurgica Sinica (English Letters), 2015, vol. 28, no. 3, pp. 307–315. doi: 10.1007/s40195-014-0198-0.
  16. Watanabe C., Monzen R., Ii S., Tsuchiya K. Microstructure and aging behavior of Cu-Be alloy processed by high-pressure torsion. Materials Science Forum, 2014, vol. 783-786, pp. 2707–2712. doi: 10.4028/ href='www.scientific.net/MSF.783-786.2707' target='_blank'>www.scientific.net/MSF.783-786.2707.
  17. Hillel G., Meshi L., Shimon S., Kalabukhov S., Frage N., Zaretsky E.B. Shock wave study of precipitation hardening of beryllium copper. Materials Science and Engineering A, 2022, vol. 834, article number 142599. doi: 10.1016/j.msea.2022.142599.
  18. Kızılaslan A., Altınsoy İ. The mechanism of two-step increase in hardness of precipitation hardened CuCoNiBe alloys and characterization of precipitates. Journal of Alloys and Compounds, 2017, vol. 701, pp. 116–121. doi: 10.1016/j.jallcom.2017.01.101.
  19. Guoliang X., Qiangsong W., Xujun M., Baiqing X., Lijun P. The precipitation behavior and strengthening of a Cu–2.0 wt% Be alloy. Materials Science and Engineering A, 2012, vol. 558, pp. 326–330. doi: 10.1016/j.msea.2012.08.007.
  20. Huang X., Xie G., Liu X., Fu H., Shao L., Hao Z. The influence of precipitation transformation on Young’s modulus and strengthening mechanism of a Cu–Be binary alloy. Materials Science and Engineering A, 2020, vol. 772, article number 138592. doi: 10.1016/j.msea.2019.138592.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c)



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies