Microhardness distribution over the surface of Zr-based metallic glass exposed to high-pressure torsion

Cover Page

Cite item

Full Text

Abstract

Identifying the peculiarities of the transformation of the structure and properties of bulk metallic glass (BMG) under high-pressure torsion (HPT) is of great interest. It is known that under HPT, the degree of deformation differs from the center to the edge of a disk which leads to the non-uniformity of the structure of obtained specimens. The change in microhardness value indicates the direction of change in BMG structure under the HPT, and the microhardness distribution indicates the HPT-specimen non-uniformity. The aim of the study is to identify the HPT influence on the microhardness value and microhardness distribution over the surface of specimens of amorphous alloys using an example of Vit105Zr-based BMG (Zr52.5Cu17.9Ni14.6Al10Ti5). The authors studied the distribution of microhardness over the surface of Vit105 Zr-based bulk metallic glass (BMG) in the initial state, in the state after HPT at n=1 and n=5 rotations, and after relaxing annealing. The study shows that the initial Vit105 BMG is characterized by a small spread in microhardness values, which indicates the material's high homogeneity. By reducing the excessive free volume, relaxing annealing increases microhardness without a significant increase in the spread of its values. HPT leads to a decrease in the zirconium BMG microhardness, which indicates an increase in the excessive free volume, but, at the same time, increases the uneven microhardness distribution over the specimen, while the microhardness values in one half of the HPT sample (n=1) are higher than in the other one. It demonstrates that BMG specimen deformation during HPT is related to the specific loading mechanisms.

About the authors

Vasily V. Astanin

Ufa State Aviation Technical University, Ufa

Email: v.astanin@gmail.com
ORCID iD: 0000-0001-9282-8806

junior researcher of Chair of Electrical Engineering

Russian Federation

Dmitry V. Gunderov

Ufa State Aviation Technical University, Ufa;
Institute of Physics of Molecules and Crystals of Ufa Federal Research Center of the Russian Academy of Sciences, Ufa

Author for correspondence.
Email: dimagun@mail.ru
ORCID iD: 0000-0001-5925-4513

Doctor of Sciences (Physics and Mathematics), Professor, leading researcher

Russian Federation

Vyacheslav V. Titov

Ufa State Aviation Technical University, Ufa

Email: molotovmelnik@gmail.com
ORCID iD: 0000-0002-4884-6027

postgraduate student of Chair of Materials Science and Physics of Metals

Russian Federation

References

  1. Kruzic J.J. Bulk Metallic Glasses as Structural Materials: A Review. Advanced Engineering Materials, 2016, vol. 18, no. 8, pp. 1308–1331. doi: 10.1002/adem.201600066.
  2. Jafary-Zadeh M., Kumar G.P., Branicio P.S., Seifi M., Lewandowski J.J., Cui F. A Critical Review on Metallic Glasses as Structural Materials for Cardiovascular Stent Applications. Journal of Functional Biomaterials, 2018, vol. 9, no. 1, article number 19. doi: 10.3390/jfb9010019.
  3. Louzguine-Luzgin D.V., Inoue A. Bulk Metallic Glasses. Handbook of Magnetic Materials. Japan, Elsevier Publ., 2013. Vol. 21, pp. 131–171. doi: 10.1016/B978-0-444-59593-5.00003-9.
  4. Axinte E. Metallic glasses from “alchemy” to pure science: Present and future of design, processing and applications of glassy metals. Materials and Design, 2012, vol. 35, pp. 518–556. doi: 10.1016/j.matdes.2011.09.028.
  5. Joo S.-H., Pi D.-H., Setyawan A.D.H., Kato H., Janecek M., Kim Y.C., Lee S., Kim H.S. Work-Hardening Induced Tensile Ductility of Bulk Metallic Glasses via High-Pressure Torsion. Scientific Reports, 2015, vol. 5, no. 1, article number 9660. doi: 10.1038/srep09660.
  6. Ren Z.Q., Churakova A.A., Wang X., Goel S., Liu S.N., You Z.S., Liu Y., Lan S., Gunderov D.V., Wang J.T., Valiev R.Z. Enhanced tensile strength and ductility of bulk metallic glasses Zr52.5Cu17.9Al10Ni14.6Ti5 via high-pressure torsion. Materials Science and Engineering A, 2021, vol. 803, article number 140485. doi: 10.1016/j.msea.2020.140485.
  7. Révész Á., Kovács Z. Severe Plastic Deformation of Amorphous Alloys. Materials Transactions, 2019, vol. 60, no. 7, pp. 1283–1293. doi: 10.2320/matertrans.MF201917.
  8. Valiev R.Z., Islamgaliev R.K., Alexandrov I.V. Bulk nanostructured materials from severe plastic deformation. Progress in Materials Science, 2000, vol. 45, no. 2, pp. 103–189. doi: 10.1016/S0079-6425(99)00007-9.
  9. Valiev R.Z., Zehetbauer V.J., Estrin Y., Hoppel H.W., Ivanisenko Y., Hahm H., Wilde G., Roven H.J., Sauvage X., Langdon T.G. The innovation potential of bulk nanostructured materials. Advanced Engineering Materials, 2007, vol. 9, no. 7, pp. 527–533. doi: 10.1002/adem.200700078.
  10. Edalati K., Horita Z. A review on high-pressure torsion (HPT) from 1935 to 1988. Materials Science and Engineering A, 2016, vol. 652, pp. 325–352. doi: 10.1016/j.msea.2015.11.074.
  11. Wang X.D., Cao Q.P., Jiang J.Z., Franz H., Schroers J., Valiev R.Z., Ivanisenko Y., Gleiter H., Fecht H.-J. Atomic-level structural modifications induced by severe plastic shear deformation in bulk metallic glasses. Scripta Materialia, 2011, vol. 64, no. 1, pp. 81–84. doi: 10.1016/j.scriptamat.2010.09.015.
  12. Glezer A.M., Sundeev R.V., Shalimova A.V. The cyclic character of phase transformations of the crystal ⇔ amorphous state type during severe plastic deformation of the Ti50Ni25Cu25 alloy. Doklady Physics, 2011, vol. 56, no. 9, pp. 476–478. doi: 10.1134/S1028335811090035.
  13. Edalati K., Bachmaier A., Beloshenko V.A., Beygelzimer Y., Blank V.D., Botta W.J., Bryla K., Cizek J., Divinski S., Enikeev N.A., Estrin Y., Faraji G. Nanomaterials by severe plastic deformation: review of historical developments and recent advances. Materials Research Letters, 2022, vol. 10, no. 4, pp. 163–256. doi: 10.1080/21663831.2022.2029779.
  14. Hóbor S., Kovács Z., Révész Á. Macroscopic thermoplastic model applied to the high pressure torsion of metallic glasses. Journal of Applied Physics, 2009, vol. 106, no. 2, article number 023531. doi: 10.1063/1.3176950.
  15. Henits P., Révész Á., Kovács Z. Free volume simulation for severe plastic deformation of metallic glasses. Mechanics of Materials, 2012, vol. 50, pp. 81–87. doi: 10.1016/j.mechmat.2012.03.008.
  16. Révész A., Schafler E., Kovács Z. Structural anisotropy in a Zr57Ti5Cu20Al10Ni8 bulk metallic glass deformed by high pressure torsion at room temperature. Applied Physics Letters, 2008, vol. 92, no. 1, article number 011910. doi: 10.1063/1.2830992.
  17. Gunderov D., Astanin V. Influence of HPT Deformation on the Structure and Properties of Amorphous Alloys. Metals, 2020, vol. 10, no. 3, article number 415. doi: 10.3390/met10030415.
  18. Kosiba K., Şopu D., Scudino S., Zhang L., Bednarcik J., Pauly S. Modulating heterogeneity and plasticity in bulk metallic glasses: Role of interfaces on shear banding. International Journal of Plasticity, 2019, vol. 119, pp. 156–170. doi: 10.1016/j.ijplas.2019.03.007.
  19. Gunderov D., Astanin V., Churakova A., Sitdikov V., Ubyivovk E., Islamov A., Wang J.T. Influence of High-Pressure Torsion and Accumulative High-Pressure Torsion on Microstructure and Properties of Zr-Based Bulk Metallic Glass Vit105. Metals, 2020, vol. 10, no. 11, pp. 1–14. doi: 10.3390/met10111433.
  20. Boltynjuk E.V., Gunderov D.V., Ubyivovk E.V., Monclus M.A., Yang L.W., Molina-Aldareguia J.M., Tyurin A.I., Kilmametov A.R., Churakova A.A., Churyumov A.Yu., Valiev R.Z. Enhanced strain rate sensitivity of Zr-based bulk metallic glasses subjected to high pressure torsion. Journal of Alloys and Compounds, 2018, vol. 747, pp. 595–602. doi: 10.1016/j.jallcom.2018.03.018.
  21. Ebner C., Escher B., Gammer C., Eckert J., Pauly S., Rentenberger C. Structural and mechanical characterization of heterogeneities in a CuZr-based bulk metallic glass processed by high pressure torsion. Acta Materialia, 2018, vol. 160, pp. 147–157. doi: 10.1016/j.actamat.2018.08.032.
  22. Gunderov D.V., Boltynjuk E.V., Sitdikov V.D., Abrosimova G.E., Churakova A.A., Kilmametov A.R., Valiev R.Z. Free volume measurement of severely deformed Zr62Cu22Al10Fe5Dy1 bulk metallic glass. Journal of Physics: Conference Series, 2018, vol. 1134, no. 1, article number 012010. doi: 10.1088/1742-6596/1134/1/012010.
  23. Gunderov D.V., Asfandiyarov R.N., Raab G.I., Churakova A.A., Astanin V.V. Method for slippage evaluation at various stages of high-pressure torsion and its application to Fe-0.1 %C. Letters on Materials, 2021, vol. 11, no. 4, pp. 416–421. doi: 10.22226/2410-3535-2021-4-416-421.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c)



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies