Hardening mechanisms contribution at nonmonotonic change of properties in the Cu–0.6Cr–0.1Zr alloy at high pressure torsion

Cover Page

Cite item

Full Text

Abstract

Phase transformations play an important role in the formation of properties in the dispersion-hardened alloys, for example, such as the Cu–Cr–Zr system alloys. It is known that under severe plastic deformation, the diffusion conditions change significantly, which leads to a change in the phase transformation kinetics. In this work, the authors studied the Cu–0.6Cr–0.1Zr alloy in the low concentration solid solution state subjected to high pressure torsion (up to 10 cycles). In this case, due to the solid solution low concentration and the formed ensemble of large particles, the process of solid solution decomposition was excluded at the first stages. The preliminary work on the analysis of such structurally sensitive characteristics as electrical conductivity and lattice parameter made it possible to identify the nonmonotonic nature of a change in the alloying elements concentration in the solid solution during HPT. Nonmonotonicity is related to the significant changes in the characteristics of the second phase particles ensemble under the influence of high voltages. Such significant structural changes are reflected in the nature of the mechanical characteristics change. The authors identified that when increasing the number of HPT revolutions, changes in strength also have a nonmonotonic nature, which corresponds to the nonmonotonic nature of changes in the concentration of alloying elements and electrical conductivity. Various contributions to the Cu–0.6Cr–0.1Zr alloy hardening were analyzed. The analysis identified that the dispersion strengthening contribution plays the main role in the nonmonotonic change in the mechanical characteristics. The calculated data correlate with the obtained experimental results.

About the authors

Denis A. Aksenov

Institute of Physics of Molecules and Crystals of Ufa Federal Research Center of the Russian Academy of Sciences, Ufa;
Ufa State Aviation Technical University, Ufa

Author for correspondence.
Email: aksyonovda@mail.ru
ORCID iD: 0000-0002-2652-2646

junior researcher

Россия

Svetlana N. Faizova

Sterlitamak branch of Bashkir State University, Sterlitamak;
Ufa State Petroleum Technological University, Ufa

Email: snfaiz@mail.ru

PhD (Physics and Mathematics), assistant professor of Chair of General and Theoretical Physics, assistant professor of Chair of Water Supply and Disposal

Россия

Ilshat A. Faizov

RN-BashNIPIneft LLC, Ufa

Email: iafaiz@mail.ru

PhD (Physics and Mathematics), chief specialist

Россия

References

  1. Edalati K., Bachmaier A., Beloshenko V.A., Beygelzimer Y., Blank V.D., Botta W.J., Bryła K., Čížek J., Divinski S.V., Enikeev N., Estrin Yu., Faraji G., Figueiredo R.B., Fuji M., Furuta T., Thierry G., Gubicza J., Hohenwarter A., Leoben M., Horita Z., Huot J., Ikoma Y., Janeček M., Kawasaki M., Král P., Kuramoto Sh., Langdon T.G., Leiva D., Levitas V.I., Mazilkin A., Mito M., Miyamoto H., Nishizaki T., Pippan R., Popov V., Popova E.N., Purcek G., Renk O., Révész A., Sauvage X., Sklenička V., Skrotzki W., Straumal B.B., Suwas S., Toth L.S., Tsuji N., Valiev R.Z., Wilde G., Zehetbauer M.J., Zhu X. Nanomaterials by Severe Plastic Deformation: Review of Historical Developments and Recent Advances. Materials Research Letters, 2022, vol. 10, no. 4, pp. 163–256. doi: 10.1080/21663831.2022.2029779.
  2. Faraji G., Kim H.S., Kashi H.T. Chapter 7. Mechanical Properties of Ultrafine-Grained and Nanostructured Metals. Severe Plastic Deformation. Niderlandy, Elsevier Publ., 2018, pp. 223–257. doi: 10.1016/b978-0-12-813518-1.00007-2.
  3. Zhilyaev A.P., Langdon T.G. Using high-pressure torsion for metal processing: Fundamentals and applications. Progress in Materials Science, 2008, vol. 53, no. 6, pp. 893–979. doi: 10.1016/j.pmatsci.2008.03.002.
  4. Sousa T.G., Moura I.A. de B., Garcia Filho F.D.C., Monteiro S.N., Brandão L. P. Combining severe plastic deformation and precipitation to enhance mechanical strength and electrical conductivity of Cu–0.65Cr–0.08Zr alloy. Journal of Materials Research and Technology, 2020, vol. 9, no. 3, pp. 5953–5961. doi: 10.1016/j.jmrt.2020.03.124.
  5. Peng L., Xie H., Huang G., Xu G., Yin X., Feng X., Mi X., Yang Z. The phase transformation and strengthening of a Cu-0.71 wt% Cr alloy. Journal of Alloys and Compounds, 2017, vol. 708, pp. 1096–1102. doi: 10.1016/j.jallcom.2017.03.069.
  6. Bodyakova A., Mishnev R., Belyakov A., Kaibyshev R. Effect of chromium content on precipitation in Cu–Cr–Zr alloys. Journal of Materials Science, 2022, vol. 57, no. 27, pp. 13043–13059. doi: 10.1007/s10853-022-07454-8.
  7. Khomskaya I.V., Zel’dovich V.I., Frolova N.Yu., Abdullina D.N., Kheifets A.E. Investigation of Cu5Zr particles precipitation in Cu-Zr and Cu-Cr-Zr alloys subjected to quenching and high strain rate deformation. Letters on Materials, 2019, vol. 9, no. 4, pp. 400–404. doi: 10.22226/2410-3535-2019-4-400-404.
  8. Chen X., Jiang F., Liu L., Huang H., Shi Z. Structure and orientation relationship of new precipitates in a Cu–Cr–Zr alloy. Materials Science and Technology (United Kingdom), 2017, vol. 34, no. 3, pp. 282–288. doi: 10.1080/02670836.2017.1376428.
  9. Ivanisenko Y., Lojkowski W., Valiev R.Z., Fecht H.-J. The mechanism of formation of nanostructure and dissolution of cementite in a pearlitic steel during high pressure torsion. Acta Materialia, 2003, vol. 51, no. 18, pp. 5555–5570. doi: 10.1016/s1359-6454(03)00419-1.
  10. Guelton N., François M. Strain-Induced Dissolution of Cementite in Cold-Drawn Pearlitic Steel Wires. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2020, vol. 51, no. 4, pp. 1602–1613. doi: 10.1007/s11661-020-05640-4.
  11. Chen H., Ji Y., Zhang C., Liu W., Chen H., Yang Z., Chen L.-Q., Chen L. Understanding cementite dissolution in pearlitic steels subjected to rolling-sliding contact loading: A combined experimental and theoretical study. Acta Materialia, 2017, vol. 141, pp. 193–205. doi: 10.1016/j.actamat.2017.09.017.
  12. Straumal B.B., Kilmametov A.R., Korneva A., Mazilkin A.A., Straumal P.B., Zieba P., Baretzky B. Phase transitions in Cu-based alloys under high pressure torsion. Journal of Alloys and Compounds, 2017, vol. 707, pp. 20–26. doi: 10.1016/j.jallcom.2016.12.057.
  13. Straumal B.B., Pontikis V., Kilmametov A.R., Mazilkin A.A., Dobatkin S.V., Baretzky B. Competition between precipitation and dissolution in Cu-Ag alloys under high pressure torsion. Acta Materialia, 2017, vol. 122, pp. 60–71. doi: 10.1016/j.actamat.2016.09.024.
  14. Straumal B.B., Kilmametova A.R., Baretzky B., Kogtenkova O.A., Straumal P.B., Litynska-Dobrzynska L., Chulist R., Korneva A., Zieba P. High pressure torsion of Cu-Ag and Cu-Sn alloys: Limits for solubility and dissolution. Acta Materialia, 2020, vol. 195, pp. 184–198. doi: 10.1016/j.actamat.2020.05.055.
  15. Faizov I.A., Mulyukov R.R., Aksenov D.A., Faizova S.N., Zemlyakova N.V., Cardoso K.R., Zeng Y. Dissolution of the second phase particles in the course of the equal channel angular pressing of diluted Cu-Cr-Zr alloy. Pisma o materialakh, 2018, vol. 8, no. 1, pp. 110–114. doi: 10.22226/2410-3535-2018-1-110-114.
  16. Faizova S.N., Raab G.I., Zaripov N.G., Aksenov D.A., Faizov I.A. Physical aspects of high-strength state formation in particle reinforced alloys under high pressure torsion. Fizicheskaya mezomekhanika, 2015, vol. 18, no. 4, pp. 87–93. EDN: UGCJQV.
  17. Faizova S.N., Aksenov D.A., Faizov I.A., Nazarov K.S. Unusual kinetics of strain-induced diffusional phase transformations in Cu-Cr-Zr alloy. Letters on Materials, 2021, vol. 11, no. 2, pp. 218–222. doi: 10.22226/2410-3535-2021-2-218-222.
  18. Zhao Y.H., Bingert J.F., Zhu Y.T., Liao X.Z., Valiev R.Z., Horita Z., Langdon T.G., Zhou Y.Z., Lavernia E.J. Tougher ultrafine grain Cu via high-angle grain boundaries and low dislocation density. Applied Physics Letters, 2008, vol. 92, no. 8, article number 081903. doi: 10.1063/1.2870014.
  19. Morozova A., Borodin E., Bratov V., Zherebtsov S., Belyakov A., Kaibyshev R. Grain Refinement Kinetics in a Low Alloyed Cu–Cr–Zr Alloy Subjected to Large Strain Deformation. Materials, 2017, vol. 10, no. 12, article number 1394. doi: 10.3390/ma10121394.
  20. Prikhodko V.M., Petrova L.G., Chudina O.V. Metallofizicheskie osnovy razrabotki uprochnyayushchikh tekhnologiy [Metallophysical basis for the development of hardening technology]. Moscow, Mashinostroenie Publ., 2003. 384 p.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c)



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies