The analysis of changes in microhardness, creep rate, and morphology of the VT1-0 titanium fracture surface deformed under the action of the constant magnetic field of 0.3 T

Cover Page

Cite item

Full Text

Abstract

Today, a promising research area is the study of the behavior of the materials’ technological and physical characteristics under the external energy effects, such as constant magnetic fields. It is caused by the emergence of multifactorial scientific and industrial problems arising because of the introduction of high technologies into production. One of the directions is the production of new equipment, devices, and machines that somehow form electromagnetic fields around them. Therefore, an umbrella approach to studying the influence of magnetic field effects on the deformation characteristics of metals and alloys contributes to a deeper understanding of the physical nature of this effect. As an object for the research, the authors selected commercially pure titanium of VT1-0 grade. The work aims to study the influence of a constant magnetic field of 0.3 T on microhardness, creep rate, and fracture surface of commercially pure VT1-0 titanium. The results show that under the influence of a constant magnetic field of 0.3 T, the relative value of VT1-0 titanium microhardness decreases by 2–5 %, followed by relaxation to the initial value. The creep rate of titanium increases by approximately 31 % when applying a field of 0.3 T induction during the test (without field applying, the creep rate is 2.4 %/h, in the magnetic field is 3 %/h). The fracture surface analysis using scanning electron microscopy (SEM) shows that titanium specimens undergo ductile fracture. Numerous equiaxial destruction pits characterize the fracture surface. It should be noted that pits with the stretched areas are present mainly on the samples destroyed under the creep conditions in a constant magnetic field of 0.3 T.

About the authors

Vitaly V. Shlyarov

Siberian State Industrial University, Novokuznetsk

Author for correspondence.
Email: shlyarov@mail.ru
ORCID iD: 0000-0001-8130-648X

postgraduate student of Professor V.M. Finkel Chair of Natural Science Disciplines

Russian Federation

Dmitry V. Zagulyaev

Siberian State Industrial University, Novokuznetsk

Email: zagulyaev_dv@bk.ru
ORCID iD: 0000-0002-9859-8949

PhD (Engineering), Associate Professor, assistant professor of Professor V.M. Finkel Chair of Natural Science Disciplines

Russian Federation

Anna A. Serebryakova

Siberian State Industrial University, Novokuznetsk

Email: aserebrakova87@gmail.com
ORCID iD: 0000-0003-3979-7777

postgraduate student of Professor V.M. Finkel Chair of Natural Science Disciplines

Russian Federation

References

  1. Morgunov R.B., Valeev R.A., Skvortsov A.A., Korolev D.V., Piskorskiy V.P., Kunitsyna E.I., Kucheryaev V.V., Koplak O.V. Magnetoplastic and magnetomechanic effects in aluminum alloys with magnetostrictive micro inclusions. Trudy VIAM, 2019, no. 10, pp. 3–13. doi: 10.18577/2307-6046-2019-0-10-3-13.
  2. Morgunov R.B. Spin micromechanics in the physics of plasticity. Uspekhi fizicheskikh nauk, 2004, vol. 174, no. 2, pp. 131–153. doi: 10.3367/UFNr.0174.200402c.0131.
  3. Morgunov R.B., Piskorskiy V.P., Valeev R.A., Korolev D.V. Thermodynamics analysis of magnetoplastic effects in “non-magnetic” metals. Trudy VIAM, 2018, no. 12, pp. 79–87. doi: 10.18577/2307-6046-2018-0-12-79-87.
  4. Jafari M., Ansari R., Rouhi S. First-principle investigation of the elastic and plastic properties of the bismuthene: Effect of the external electric field. Superlattices and Microstructures, 2020, vol. 140, article number 106476. doi: 10.1016/j.spmi.2020.106476.
  5. Huang C., Shuai S., Wang P., Liu X., Wang J., Ren Z. The effect of static magnetic field on solid–liquid interfacial free energy of Al–Cu alloy system. Scripta Materialia, 2020, vol. 187, pp. 232–236. doi: 10.1016/j.scriptamat.2020.06.025.
  6. Chen R., Kong H.J., Luan J.H., Wang A.D., Jiang P., Liu C.T. Effect of external applied magnetic field on microstructures and mechanical properties of laser welding joint of medium-Mn nanostructured steel. Materials Science and Engineering: A, 2020, vol. 792, article number 139787. doi: 10.1016/j.msea.2020.139787.
  7. Li G.R., Wang F.F., Wang H.M., Cheng J.F. Microstructure and Mechanical Properties of TC4 Titanium Alloy Subjected to High Static Magnetic Field. Materials Science Forum, 2017, vol. 898 MSF, pp. 345–354. doi: 10.4028/ href='www.scientific.net/MSF.898.345' target='_blank'>www.scientific.net/MSF.898.345.
  8. Li G.R., Qin T., Fei A.G., Wang H.M., Zhao Y.T., Chen G., Kai X.Z. Performance and microstructure of TC4 titanium alloy subjected to deep cryogenic treatment and magnetic field. Journal of Alloys and Compounds, 2019, vol. 802, pp. 50–69. doi: 10.1016/j.jallcom.2019.06.007.
  9. Seydametov S.V., Loskutov S.V. The influence of pulse electromagnetic field on rebuilding of structure of titanium alloy VT3-1. Zhurnal fiziki i inzhenerii poverkhnosti, 2016, vol. 1, no. 1, pp. 4–8.
  10. Galustashvili M.V., Driaev D.G., Kvatchadze V.G. Magnetoplastic Effect under Stress Relaxation in NaCl Crystals. JETP Letters, 2019, vol. 110, no. 12, pp. 785–788. doi: 10.1134/S0021364019240044.
  11. Alshits V.I., Darinskaya E.V., Koldaeva M.V., Petrzhik E.A. Resonance magnetoplasticity in ultralow magnetic fields. JETP Letters, 2016, vol. 104, no. 5, pp. 353–364. doi: 10.1134/S0021364016170045.
  12. Morgunov R.B., Buchachenko A.L. Magnetoplasticity and magnetic memory in diamagnetic solids. Journal of Experimental and Theoretical Physics, 2009, vol. 109, no. 3, pp. 434–441. doi: 10.1134/S1063776109090076.
  13. Buchachenko A.L. Effect of magnetic field on mechanics of nonmagnetic crystals: the nature of magnetoplasticity. Journal of Experimental and Theoretical Physics, 2006, vol. 102, no. 5, pp. 795–798.
  14. Sugatov E.V., Kuzmina L.V., Gazenaur E.G., Krasheninin V.I. The influence of concentration of iron and lead impurities on the magnetic threshold of the magnetoplastic effect in the silver azide crystals. Fundamentalnye problemy sovremennogo materialovedeniya, 2014, vol. 11, no. 4-2, pp. 610–613.
  15. Alshits V.I., Darinskaya E.V., Koldaeva M.V., Petrzhik E.A. Chapter 86 - Magnetoplastic Effect in Nonmagnetic Crystals. Dislocations in Solids, 2008, vol. 14, pp. 333–437. doi: 10.1016/S1572-4859(07)00006-X.
  16. Skvortsov A.A., Pshonkin D.E., Luk’yanov M.N., Rybakova M.R. Influence of permanent magnetic fields on creep and microhardness of iron-containing aluminum alloy. Journal of Materials Research and Technology, 2019, vol. 8, no. 3, pp. 2481–2485. doi: 10.1016/j.jmrt.2019.02.002.
  17. Du D., Haley J.C., Dong A., Fautrelle Y., Shu D., Zhu G., Li X., Sun B., Lavernia E.J. Influence of static magnetic field on microstructure and mechanical behavior of selective laser melted AlSi10Mg alloy. Materials and Design, 2019, vol. 181, article number 107923. doi: 10.1016/j.matdes.2019.107923.
  18. Zhu L., Han C., Hou L., Gagnoud A., Fautrelle Y., Ren Z., Li X. Influence of a static magnetic field on the distribution of solute Cu and interdendritic constitutional undercooling in directionally solidified Al-4.5wt.%Cu alloy. Materials Letters, 2019, vol. 248, pp. 73–77. doi: 10.1016/j.matlet.2019.03.142.
  19. Guo S., Cui J., Le Q., Zhao Z. The effect of alternating magnetic field on the process of semi-continuous casting for AZ91 billets. Materials Letters, 2005, vol. 59, no. 14-15, pp. 1841–1844. doi: 10.1016/j.matlet.2005.01.076.
  20. Liu Y.Z., Zhan L.H., Ma Q.Q., Ma Z.Y., Huang M.H. Effects of alternating magnetic field aged on microstructure and mechanical properties of AA2219 aluminum alloy. Journal of Alloys and Compounds, 2015, vol. 647, pp. 644–647. doi: 10.1016/j.jallcom.2015.05.183.
  21. Zagulyaev D.V., Konovalov S.V., Yaropolova N.G., Ivanov Y.F., Komissarova I.A., Gromov V.E., Effect of the magnetic field on the surface morphology of copper upon creep fracture. Journal of Surface Investigation, 2015, vol. 9, no. 2, pp. 410–414. doi: 10.1134/S1027451015010188.
  22. Shlyarov V.V., Zagulyaev D.V., Gromov V.E. The influence of magnetic fields on the structure and physico-mechanical properties of aluminum. Vektor nauki Tolyattinskogo gosudarstvennogo universiteta, 2018, no. 1, pp. 98–104. doi: 10.18323/2073-5073-2018-1-98-104.
  23. Zagulyaev D., Konovalov S., Shlyarov V., Chen X. Influence of constant magnetic field on plastic characteristics of paramagnetic metals. Materials Research Express, 2019, vol. 6, no. 9, article number 096523. doi: 10.1088/2053-1591/ab2c8a.
  24. Kassner M.E. Fundamentals of Creep in Metals and Alloys. 3rd ed. Amsterdam, Elsevier Ltd. Publ., 2015. 333 p. doi: 10.1016/B978-0-08-047561-5.X0001-2.
  25. Ivanova V.S., Shanyavskiy A.A. Kolichestvennaya fraktografiya. Ustalostnoe razrushenie [Quantitative fractography. Fatigue failure]. Chelyabinsk, Metallurgiya. Chelyabinskoe otdelenie Publ., 1988. 399 p.
  26. Klevtsov G.V., Botvina L.R., Klevtsova N.A., Limar L.V. Fraktodiagnostika razrusheniya metallicheskikh materialov i konstruktsiy [Fracture diagnostic of metallic materials and constructions]. Moscow, MISiS Publ., 2007. 264 p.
  27. Alshits V.I., Darinskaya E.V., Kazakova O.L. Magnetoplastic effect and spin-lattice relaxation in the dislocation – paramagnetic center system. Pisma v zhurnal eksperimentalnoy i teoreticheskoy fiziki, 1996, vol. 64, no. 8, pp. 628–633.
  28. Golovin Yu.I. Magnetoplastic effects in solids. Physics of the Solid State, 2004, vol. 46, no. 5, pp. 789–824.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c)



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies