The influence of aging on phase composition and mechanical properties of vanadium-alloyed high-nitrogen steel
- Authors: Tumbusova I.A.1,2, Maier G.G.1
-
Affiliations:
- Institute of Strength Physics and Materials Science, Siberian Branch of the Russian Academy of Sciences, Tomsk
- Tomsk Polytechnic University, Tomsk
- Issue: No 1 (2022)
- Pages: 82-90
- Section: Articles
- URL: https://vektornaukitech.ru/jour/article/view/268
- DOI: https://doi.org/10.18323/2782-4039-2022-1-82-90
- ID: 268
Cite item
Full Text
Abstract
Complex solid solution hardening of austenitic chrome-manganese steels by nitrogen and carbon is one of the most effective ways of production of high-nitrogen austenitic steels (HNS) without using special casting methods. To enhance the solubility of interstitials in the metal liquid state and suppress undesired secondary phases of Cr2N and Cr23C6, the carbide-forming elements (for instance, vanadium) are added to the HNS composition. By now, there are no experimental works on the age-hardening of ultrahigh-interstitial vanadium steels (more than 1 % wt.). In the present work, the authors used the X-ray structure analysis method, electron microscopy, and the uniaxial static tensile tests to study the effect of temperature (600 °С and 700 °С) and duration (0.5 h, 5 h) of age-hardening on the structure and mechanical properties of ultrahigh-interstitial vanadium-containing Cr–Mn steel (Fe–22Cr–26Mn–1.3V–0.7C–1.2N, N+C=1.9 % wt.). The experiments demonstrated that due to the complex decomposition (by intermittent and continuous mechanisms) of austenite saturated by interstitials, the aging at 600 °С and 700 °С is accompanied by a solid-solution hardening of the austenitic phase by carbonitrides Cr2(N, С) and (V,Cr)(N,С). The study identified that the increased temperature and prolongation of age-hardening stimulate the movement of intermittent decomposition front from the boundaries to the center of austenitic grains. (V,Cr)(N,С) particles formed by the continuous decomposition in the austenitic grains hinder the propagation of the reaction front, meanwhile, the large spherical (V,Cr)(N,C) and Cr2(N,C) particles, not dissolved after quenching, have little effect on its movement. At the chosen age-hardening modes, the yield strength of steel increases, and the fracture elongation decreases.
About the authors
Irina A. Tumbusova
Institute of Strength Physics and Materials Science, Siberian Branch of the Russian Academy of Sciences, Tomsk; Tomsk Polytechnic University, Tomsk
Author for correspondence.
Email: tumbusova031098@mail.ru
ORCID iD: 0000-0001-6793-4324
engineer, student
РоссияGalina G. Maier
Institute of Strength Physics and Materials Science, Siberian Branch of the Russian Academy of Sciences, Tomsk
Email: galinazg@yandex.ru
ORCID iD: 0000-0003-3043-9754
PhD (Physics and Mathematics), researcher of Laboratory of Physics of Structural Transformations
РоссияReferences
- Sagaradze V.V., Uvarov A.I. Uprochnenie i svoystva austenitnykh staley [Hardening and properties of austenitic steels]. Ekaterinburg, RIO UrO RAN Publ., 2013. 720 p.
- Gavriljuk V.G., Berns H. High nitrogen steels: structure, properties, manufacture, applications. Berlin, Springer Science & Business Media Publ., 1999. 378 p.
- Bannykh O.A. Structural Features and Application Prospects for High-Nitrogen Austenitic Steels. Metal Science and Heat Treatment, 2019, vol. 61, no. 5-5, pp. 287–294. doi: 10.1007/s11041-019-00418-x.
- Narkevich N.A., Galchenko N.K., Mironov Yu.P. Plasticity and superplasticity of high-nitrogenous chrome-manganese steels. Fizicheskaya mezomekhanika, 2004, vol. 7, no. 6, pp. 79–83.
- Maznichevsky A.N., Sprikut R.V., Goikhenberg Y.N. Investigation of Nitrogen Containing Austenitic Stainless Steel. Materials Science Forum, 2020, vol. 989 MSE, pp. 152–159. doi: 10.4028/ href='www.scientific.net/MSF.989.152' target='_blank'>www.scientific.net/MSF.989.152.
- Narkevich N.A., Mironov Y.P., Shulepov I.A. Structure, mechanical, and tribotechnical properties of an austenitic nitrogen steel after frictional treatment. The Physics of Metals and Metallography, 2017, vol. 118, no. 4, pp. 399–406. doi: 10.1134/S0031918X17020090.
- Pridantsev M.V., Talov N.P., Levin F.L. Vysokoprochnye austenitnye stali [High-strength austenitic steels]. Moscow, Metallurgiya Publ., 1969. 247 p.
- Maznichevskiy A.N., Goykhenberg Yu.N., Sprikut R.V., Savushkina E.S. Influence of nitrogen on mechanical properties and technological plasticity of austenitic steel. Vestnik Yuzhno-Uralskogo gosudarstvennogo universiteta. Seriya: Metallurgiya, 2019, vol. 19, no. 2, pp. 25–35.
- Gavriljuk V.G., Berns H., Escher C., Glavatskaya N.I., Sozinov A., Petrov Yu.N. Grain boundary strengthening in austenitic nitrogen steels. Materials Science and Engineering: A, 1999, vol. 271, no. 1-2, pp. 14–21. doi: 10.1016/S0921-5093(99)00272-5.
- Masumura T., Seto Y., Tsuchiyama T., Kimura K. Work-hardening mechanism in high-nitrogen austenitic stainless steel. Materials Transactions, 2020, vol. 61, no. 4, pp. 678–684. doi: 10.2320/matertrans.H-M2020804.
- Chumlyakov Yu.I., Kireeva I.V., Zakharova E.G., Luzginova N.V., Sekhitoglu Kh., Karaman I. Mechanical hardening and fracture of monocrystals of austenitic high-interstitial steels. Izvestiya vysshikh uchebnykh zavedeniy. Fizika, 2002, vol. 45, no. 3, pp. 61–72.
- Svyazhin A.G., Kaputkina L.M. Nitrogen steels and high nitrogen steels. Industrial technologies and properties. Izvestiya vysshikh uchebnykh zavedeniy. Chernaya metallurgiya, 2019, vol. 62, no. 3, pp. 173–187. doi: 10.17073/0368-0797-2019-3-173-187.
- Rashev T.V., Eliseev A.V., Zhekova L.T., Bogev P.V. High-nitrogen steel. Steel in Translation, 2019, vol. 49, no. 7, pp. 433–439. doi: 10.17073/0368-0797-2019-7-503-510.
- Kostina M.V., Rigina L.G. Nitrogen-containing steels and methods of their production. Izvestiya vysshikh uchebnykh zavedeniy. Chernaya metallurgiya, 2020, vol. 63, no. 8, pp. 606–622. doi: 10.17073/0368-0797-2020-8-606-622.
- Shanina B.D., Gavriljuk V.G., Berns H., Schmalt F. Concept of a new high‐strength austenitic stainless steel. Steel research, 2002, vol. 73, no. 3, pp. 105–113. doi: 10.1002/srin.200200181.
- Gavriljuk V.G. Influence of interstitial carbon, nitrogen, and hydrogen on the plasticity and brittleness of steel. Steel in Translation, 2015, vol. 45, no. 10, pp. 747–753. doi: 10.3103/S0967091215100046.
- Blinov V.M. The progress in the research of high-nitrogen rust-resisting ageing nonmagnetic steels with vanadium. Metally, 2007, no. 2, pp. 44–54.
- Lo K.H., Shek C.H., Lai J.K.L. Recent developments in stainless steels. Materials Science and Engineering R: Reports, 2009, vol. 65, no. 4-6, pp. 39–104. doi: 10.1016/j.mser.2009.03.001.
- Astafurov S.V., Maier G.G., Tumbusova I.A., Melnikov E.V., Moskvina V.A., Panchenko M.Y., Smirnov A.I., Galchenko N.K., Astafurova E.G. The effect of solid-solution temperature on phase composition, tensile characteristics and fracture mechanism of V-containing CrMn-steels with high interstitial content C + N > 1 mass. %. Materials Science and Engineering: A, 2020, vol. 770, article number 138534. doi: 10.1016/j.msea.2019.138534.
- Mikhno A.S., Panchenko M.Yu., Mayer G.G., Moskvina V.A., Melnikov E.V., Astafurov S.V., Astafurova E.G. Effect of the precipitation hardening on regularities of plastic deformation and fracture mode of V-alloyed high nitrogen austenitic steel. Vektor nauki Tolyattinskogo gosudarstvennogo universiteta, 2020, no. 2, pp. 42–50. doi: 10.18323/2073-5073-2020-2-42-50.
- Bannykh O.A., Blinov V.M. Dispersionno-tverdeyushchie nemagnitnye vanadiysoderzhashchie stali [Age-hardened nonmagnetic vanadium-containing steels]. Moscow, Nauka Publ., 1980. 190 p.
- Kikuchi M., Kajihara M., Choi S.K. Cellular precipitation involving both substitutional and interstitial solutes: cellular precipitation of Cr2N in Cr–Ni austenitic steels. Materials Science and Engineering: A, 1991, vol. 146, no. 1-2, pp. 131–150. doi: 10.1016/0921-5093(91)90273-P.
- Sagaradze V.V., Goshchitskii B.N., Volkova E.G., Voronin V.I., Berger I.F., Uvarov A.I. Evolution of the microstructure and microstresses in the 40KH4G18F2 steel upon carbide aging. The Physics of Metals and Metallography, 2011, vol. 111, № 1, pp. 80–90.