Forming an edged cubic texture in band substrates made of (Cu+Ni)–Me (Me=Mo, Mn, Nb) alloys for high-temperature second-generation superconductors

Cover Page

Cite item

Full Text

Abstract

After cold-rolling reduction with the shrinkage of more than 97 % and recrystallization annealing, the edged cubic texture develops in some fcc lattice metals with the high and medium values of stacking fault energy such as Ni, Cu, Al, Pt, and some alloys on their base. The extended bands of metals and fcc lattice alloys can be used to apply multilayer functional compositions. The authors studied the structure and crystallographic texture in bands of three-component copper-nickel-based alloys. The study showed the crucial possibility of creating multi-component alloys based on the Cu+40% Ni binary alloy doped with such elements as Mo or Nb. The paper considers the formation of an edged cubic texture in bands of Cu–Ni–Mn, Cu–Ni–Nb, and Cu–Ni–Мо alloys produced through cold deformation with rolling and recrystallization annealing performed at different temperatures. The study identified that annealing during one hour at 1050 °С was an optimal recrystallization annealing mode when on the surface of bands made of (Cu+40 % Ni)–Me alloys (where Me=Mn, Mo, Nb) deformed at ~99 %, the most perfect cubic texture was realized. According to the data obtained, after such annealing mode, from 94% to 98% of grains with orientation {001}<100> developed in the Cu–40% Ni–1.3% Mn, Cu–40% Ni–0.8% Mo, and Cu–40% Ni–0.5% Nb alloys. It opens the prospect of using these alloys as epitaxial substrates in the technology of high-temperature second-generation superconductors. The evaluation of mechanical characteristics showed that alloying contributed to an increase in the yield strength of Cu–40% Ni–1.3% Mn, Cu–40% Ni–0.8% Mo, and Cu–40% Ni–0.5% Nb alloys by 3–4 times compared with the yield strength value of a textured copper band.

About the authors

Teona R. Suaridze

M.N. Mikheev Institute of Metal Physics of Ural Branch of Russian Academy of Sciences, Ekaterinburg

Author for correspondence.
Email: t.suaridze@yandex.ru
ORCID iD: 0000-0003-4845-1102

junior researcher

Russian Federation

Yuliya V. Khlebnikova

M.N. Mikheev Institute of Metal Physics of Ural Branch of Russian Academy of Sciences, Ekaterinburg

Email: yulia_kh@imp.uran.ru
ORCID iD: 0000-0003-2196-1647

PhD (Engineering), leading researcher

Russian Federation

Lada Yu. Egorova

M.N. Mikheev Institute of Metal Physics of Ural Branch of Russian Academy of Sciences, Ekaterinburg

Email: egorova@imp.uran.ru
ORCID iD: 0000-0002-1951-2976

PhD (Engineering), senior researcher

Russian Federation

References

  1. Goyal A., ed. Tokonesushchie lenty vtorogo pokoleniya na osnove vysokotemperaturnykh sverkhprovodnikov [Second-Generation HTS Conductors]. Moscow, LKI Publ., 2010. 432 p.
  2. Subramanya Sarma V., Eickemeyer J., Schultz L., Holzapfel B. Recrystallization texture and magnetization behaviour of some FCC Ni-W alloys. Scripta Materialia, 2004, vol. 50, no. 7, pp. 953–957. doi: 10.1016/j.scriptamat.2004.01.004.
  3. Strickland N.M., Wimbush S.C., Rupich M.W., Long N.J. Asymmetries in the field and angle dependences of the critical current in HTS tapes. IEEE Transactions on Applied Superconductivity, 2019, vol. 29, no. 5, article number 8620293. doi: 10.1109/TASC.2019.2894278.
  4. Gao M.M., Zhang F.Y., Liang S., Li H.B., Ma L., Liu M., Kausar S., Suo H.L. Influence of cube texture development on magnetic properties of Ni–5 at.%W alloy substrates. Journal Magnetism and Magnetic Materials, 2019, vol. 469, pp. 515–521. doi: 10.1016/j.jmmm.2018.09.029.
  5. Ji Y., Suo H., Zhang Z., Ma L., Wu X., Zhang C., Wu X., Zhang C., Li J., Cui J., Li C., Kausar S., Liu M., Wang Y., Wang Q. Strong cube texture of super-high tungsten Ni-W alloy substrates used in REBCO coated conductors. Journal of Alloys and Compounds, 2020, vol. 820, article number 153430. doi: 10.1016/j.jallcom.2019.153430.
  6. Ji Y., Suo H., Meng Y., Wu X., Shaheen K., Ma L., Liu M., Wang L., Zang Z. A Study about Ni–8 at. % W Alloy Substrates Used for REBCO Coated Conductors. Physics of Metals and Metallography, 2021, vol. 122, pp. 1473–1481. doi: 10.1134/S0031918X21140118.
  7. Jia Y.T., Suo H.L., Ma L., Wang Z., Yua D., Shaheena K., Cuia J., Liu J., Gao M.M. Formation of Recrystallization Cube Texture in Highly Rolled Ni–9.3 at. % W. Physics of Metals and Metallography, 2020, vol. 121, no. 3, pp. 248–253. doi: 10.1134/S0031918X20020180.
  8. Vishnyakov Ya.D. Defekty upakovki v kristallicheskoy structure [Stacking faults in crystal structure]. Moscow, Metallurgiya Publ., 1970. 216 p.
  9. Gervas’eva I.V., Rodionov D.P., Khlebnikova Y.V. The deformation texture of rolled ribbons of copper-based alloys as a condition of producing a sharp cubic texture upon recrystallization. The Physics of Metals and Metallography, 2015, vol. 116, no. 7, pp. 690–697. doi: 10.7868/S0015323015070074.
  10. Khlebnikova Y.V., Rodionov D.P., Gervas’eva I.V., Suaridze T.R., Akshentsev Y.N., Kazantsev V.A. Choice of copper-based alloys for ribbon substrates with a sharp cube texture. The Physics of Metals and Metallography, 2014, vol. 115, no. 12, pp. 1231–1240. doi: 10.7868/S0015323014120031.
  11. Soubeyroux J.L., Bruzek C.E., Girard A., Jorda J.L. Thermal Treatments for Biaxially Textured Cu-Ni Alloys for YBCO Coated Conductors. IEEE Transactions on applied superconductivity, 2005, vol. 15, no. 2, pp. 2687–2690. doi: 10.1109/TASC.2005.847783.
  12. Girard A., Bruzek C.E., Jorda J.L., Ortega L., Soubeyrouxet J.L. Industrial Cu-Ni alloys for HTS coated conductor tape. Journal of Physics: Conference Series, 2006, vol. 43, no. 1, pp. 341–343. doi: 10.1088/1742-6596/43/1/085.
  13. Cui J., Suo H.-L., Wang J.-H., Grivel J.-C., Ma L., Li C.-Y., Ji Y.-T., Kausar S., Liu M., Wang Y. Effect of different deformation and annealing procedures on non-magnetic textured Cu60Ni40 alloy substrates. International Journal of Minerals, Metallurgy and Materials, 2018, vol. 25, no. 8, pp. 930–936. doi: 10.1007/s12613-018-1642-3.
  14. Chen X., Chen D., Sun H., Wang L. Effects of Cold Rolling Reduction and Annealing Temperature on Microstructure and Texture Evolution of Cu-44% Ni Alloy. Rare Metal Materials and Engineering, 2018, vol. 47, no. 7, pp. 1958–1964. doi: 10.1016/S1875-5372(18)30165-6.
  15. Prasad Rao P., Agrawal B.K., Rao A.M. Studies on spinodal decomposition in Cu-27Ni-2Cr alloy. Journal of Materials Science, 1986, vol. 21, pp. 3759–3766. doi: 10.1007/BF00553427.
  16. Raghavendra Bhat R., Prasad Rao P. Effect of thermomechanical treatment on the phase transformation in Cu-44Ni-5Cr alloy. Journal of Materials Science, 1994, vol. 29, no. 18, pp. 4808–4818. doi: 10.1007/BF00356527.
  17. Liu Z., Liu P., Fan R., Li W., Zhang F. Effect of hot deformation of cube texture in annealed Cu-Ni-W substrate. Physica C: Superconductivity and its applications, 2019, vol. 563, pp. 63–66. doi: 10.1016/j.physc.2019.04.014.
  18. Varanasi C.V., Brunke L., Burke J., Maartense I., Padmaja N., Efstathiadis H., Chaney A., Barnes P.N. Biaxially textured constantan alloy (Cu 55 wt%, Ni 44 wt%, Mn 1 wt%) substrates for YBa2Cu3O7−x coated conductors. Superconductor Science and Technology, 2006, vol. 19, no. 9, pp. 896–901. doi: 10.1088/0953-2048/19/9/002.
  19. Khlebnikova Y.V., Suaridze T.R., Rodionov D.P., Egorova L.Y., Gervas’eva I.V., Gulyaeva R.I. Anticorrosion properties of textured substrates made of copper–nickel-based ternary alloys. The Physics of Metals and Metallography, 2017, vol. 118, no. 11, pp. 1147–1154. doi: 10.7868/S0015323017110043.
  20. Rodionov D.P., Akshentsev Yu.N., Gervaseva I.V., Khlebnikova Yu.V., Suaridze T.R. Sposob izgotovleniya biaksialno teksturirovannoy podlozhki iz troynogo splava na medno-nikelevoy osnove [The technique of production of a biaxial textured substrate made of a ternary copper-nickel-base alloy], patent RF no. 2624564, 2017. 9 p.
  21. Vannozzi A., Thalmaier Gy., Armenio A.A., Augieri A., Galluzzi V., Mancini A., Rufoloni A., Petrisor T., Celentano G. Development and characterization of cube-textured Ni-Cu-Co substrates for YBCO-coated conductors. Acta Materialia, 2010, vol. 58, no. 3, pp. 910–918. doi: 10.1016/j.actamat.2009.10.006.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c)



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies