The influence of chemical composition on solid solution and strain hardening of single crystals of FCC high-entropy alloys

Cover Page

Cite item

Full Text

Abstract

A characteristic feature of high-entropy alloys is high strength at maintaining plasticity, wear and corrosion resistance, and fracture toughness at cryogenic temperatures. Currently, CoCrFeNiMn is the best-investigated high-entropy compound. However, its application is limited in the high-temperature region due to the low values of the deforming stress level at the plasticity breaking point at T>296 K. One of the common ways to improve the material durability is the addition of substitution atoms of larger atomic radius, and Al, Ti, and Mo are some of these atoms. The paper presents the analysis of the mechanical behavior of single crystals of CoCrFeNiMn and CoCrFeNiMо FCC high-entropy alloys (at. %) oriented along the [001] direction: the author studied the temperature dependence of critical shear stresses τcr(T) within the temperature range of T=77–973K, the type of dislocation structure, strain hardening coefficient θII, plasticity and fracture at Т=296 K under tension. The study shows that the alloying with Mo atoms 4 at. % of the CoCrFeNi system (at. %) causes the solid solution hardening, and critical shear stresses τcr increase within the entire studied temperature range. The onset of plastic deformation is associated with slip at all temperature tests. At T=296 K, the author identified a planar dislocation structure with flat dislocation pile-ups and dislocation networks in CoCrFeNiMo while in equiatomic CoCrFeNiMn, at such test temperature, a uniform distribution of dislocations was observed in several systems without flat pile-ups. Work hardening coefficient, plasticity, and the level of stresses before fracture turn out to be similar in [001]-crystals of CoCrFeNiMo and CoCrFeNiMn high-entropy alloys, which are determined by the development of slip deformation simultaneously in several systems. Crystals are destroyed viscously at 296 K at the same level of stress.

About the authors

Anna V. Vyrodova

National Research Tomsk State University, Tomsk

Author for correspondence.
Email: wirodowa@mail.ru
ORCID iD: 0000-0001-8326-3575

postgraduate student, junior researcher

Россия

References

  1. Zhang Y., Zuo T.T., Tang Z., Gao M.C., Dahmen K.A., Liaw P.K., Lu Z.P. Microstructures and properties of high-entropy alloys. Progress in Materials Science, 2014, vol. 61, pp. 1–93. doi: 10.1016/j.pmatsci.2013.10.001.
  2. Miracle D.B., Senkov O.N. A critical review of high entropy alloys and related concepts. Acta Materialia, 2017, vol. 122, pp. 448–511. doi: 10.1016/j.actamat.2016.08.081.
  3. Li Z.Z., Zhao S.T., Ritchie R.D., Meyers M.A. Mechanical properties of high-entropy alloys with emphasis on face-centered cubic alloys. Progress in Materials Science, 2019, vol. 102, pp. 296–345. doi: 10.1016/j.pmatsci.2018.12.003.
  4. George E.P., Raabe D., Ritchie R.O.. High-entropy alloys. Nature Reviews Materials, 2019, vol. 4, no. 8, pp. 515–534. doi: 10.1038/s41578-019-0121-4.
  5. Gludovatz B., Hohenwarter A., Catoor D., Chang E.H., George E.P., Ritchie R.O. A fracture-resistant high-entropy alloy for cryogenic applications. Science, 2014, vol. 345, no. 6201, pp. 1153–1158. doi: 10.1126/science.1254581.
  6. Ye Y.F., Wang Q., Lu J., Liu C.T., Yang Y. High-entropy alloy: challenges and prospects. Materials Today, 2016, vol. 19, no. 6, pp. 349–362. doi: 10.1016/j.mattod.2015.11.026.
  7. Otto F., Dlouhy A., Somsen C., Bei H., Eggeler G., George E.P. The influence of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy. Acta Materialia, 2013, vol. 61, no. 15, pp. 5743–5755. doi: 10.1016/j.actamat.2013.06.018.
  8. Laplanche G., Kostka A., Horst O.M., Eggeler G., George E.P. Microstructure evolution and critical stress for twinning in the CrMnFeCoNi high-entropy alloy. Acta Materialia, 2016, vol. 118, pp. 152–163. doi: 10.1016/j.actamat.2016.07.038.
  9. Joo S.-H., Kato H., Jang M.J., Moon J., Tsai C.W., Yeh J.W., Kim H.S. Tensile deformation behavior and deformation twinning of an equimolar CoCrFeMnNi high-entropy alloy. Materials science and engineering A-structural materials properties microstructure and processing, 2017, vol. 689, pp. 122–133. doi: 10.1016/j.msea.2017.02.043.
  10. Yasuda H.Y., Shigeno K., Nagase T. Dynamic strain aging of Al0.3CoCrFeNi high entropy alloy single crystals. Scripta Materialia, 2015, vol. 108, pp. 80–83. doi: 10.1016/j.scriptamat.2015.06.022.
  11. Zhao Y.Y., Chen H.W., Lu Z.P., Nieh T.G. Thermal stability and oarsening of coherent particles in a precipitation-hardened (NiCoFeCr)94Ti2Al4 high-entropy alloy. Acta Materialia, 2018, vol. 147, pp. 184–194. doi: 10.1016/j.actamat.2018.01.049.
  12. Yasuda H.Y., Miyamoto H., Cho K., Nagase T. Formation of ultrafine-grained microstructure in Al0.3CoCrFeNi. Materials Letters, 2017, vol. 199, pp. 120–123. doi: 10.1016/j.matlet.2017.04.072.
  13. Cantor B., Chang I.T.H., Knight P., Vincent A.J.B. Microstructural development in equiatomic multicomponent alloys. Materials science and engineering A-structural materials properties microstructure and processing, 2004, vol. 375-377, pp. 213–218. doi: 10.1016/j.msea.2003.10.257.
  14. Li D.Y., Zhang Y. The ultrahigh charpy impact toughness of forged AlxCoCrFeNi high entropy alloys at room and cryogenic temperatures. Intermetallics, 2016, vol. 70, pp. 24–28. doi: 10.1016/j.intermet.2015.11.002.
  15. Wu Z., Gao Y.F., Bei H. Single crystal plastic behavior of a single-phase, face-center-cubic-structured, equiatomic FeNiCrCo alloy. Scripta Materialia, 2015, vol. 109, pp. 108–112. doi: 10.1016/j.scriptamat.2015.07.031.
  16. Ma S.C., Zhang S.F., Qiao J.W., Wang Z.H., Gao M.C., Jiao Z.M., Yang H.J., Zhang Y. Superior high tensile elongation of a single-crystals CoCrFeNiAl0.3 high-entropy alloy by Bridgman solidification. Intermetallics, 2014, vol. 54, pp. 104–109. doi: 10.1016/j.intermet.2014.05.018.
  17. Cai B., Liu B., Kabra S., Wang Y.Q., Yan K., Lee P.D., Liu Y. Deformation mechanisms of Mo alloyed FeCoCrNi high entropy alloy: In situ neutron diffraction. Acta Materialia, 2017, vol. 127, pp. 471–480. doi: 10.1016/j.actamat.2017.01.034.
  18. Tawancy H.M. On the tensile strength of medium entropy Fe30Ni30Cr20Co17Mo2W1 alloy with high microstructural stability. Materials science and engineering A-structural materials properties microstructure and processing, 2020, vol. 781, article number 139239. doi: 10.1016/j.msea.2020.139239.
  19. Byrnes M.L.G., Gruyicic M., Owen W.S. Nitrogen strengthening of a stable austenitic stainless steel. Acta Merallurgica, 1987, vol. 35, no. 7, pp. 1853–1862. doi: 10.1016/0001-6160(87)90131-3.
  20. Kireeva I.V., Chumlyakov Yu.I., Pobedennaya Z.V., Vyrodova A.V., Karaman I. Twinning in [001]-oriented single crystals of CoCrFeMnNi high-entropy alloy at tensile deformation. Materials science and engineering A-structural materials properties microstructure and processing, 2018, vol. 713, pp. 253–259. doi: 10.1016/j.msea.2017.12.059.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c)



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies