The study of temperatures in a tungsten electrode at reverse polarity arcing

Cover Page

Cite item

Full Text

Abstract

The paper considers the features of energy release in a tungsten electrode under the reverse polarity TIG welding. The study substantiates the statement that the chemical composition of an electrode does not significantly affect the transfer of anode power to it. The specific effective power of an electrode is substantiated and taken as 6 W/A. The authors analyzed the features of arcing on the flat tip of a 3 mm diameter electrode using high-speed video. The analysis identified that at limiting currents ensuring tip melting, the tip heating is uniform over the cross-section. As a design scheme, the authors selected a continuous flat heat source on the semi-infinite rod surface with surface heat transfer. The authors obtained averaged values for volumetric heat capacity сρ=3.2 J/(cm3∙°С) and heat transfer coefficient а=0.3 cm2/s. The current at which the tip melting temperature is reached was taken as a limiting current. Using the limiting current value and start time of the electrode tip melting, the authors calculated the electrode heat transfer coefficient value b. The calculated melting depth for the over-limiting current welding mode showed good coincidence with an experiment. The authors recalculated the b value for the electrodes of 4-, 5-, and 6-mm diameter and calculated limiting currents for these diameters. The design limiting currents for these diameters also showed good coincidence with experimental results. The study showed that the increase of a coefficient up to 0.4 cm2/s does not cause changes in temperature and limiting currents at simultaneous сρ adjustment according to the constant thermal and physical properties сρа0.5. As a result, the authors obtained temperature dependencies for the electrode over time and length. Time dependence of the electrode tip heating allows calculating limiting currents with the decrease in arcing time.

About the authors

Vladimir P. Sidorov

Togliatti State University, Togliatti (Russia)

Author for correspondence.
Email: Vladimir.sidorov.2012@list.ru
ORCID iD: 0000-0001-6191-2888

Doctor of Sciences (Engineering), Professor, professor of Chair “Welding, Pressure Treatment of Materials and Allied Processes”

Россия

Dmitry E. Sovetkin

Togliatti State University, Togliatti (Russia)

Email: fake@neicon.ru
ORCID iD: 0000-0002-6942-4501

senior lecturer of Chair “Welding, Pressure Treatment of Materials and Allied Processes”

Россия

References

  1. Drits A.M., Ovchinnikov V.V. Svarka alyuminievykh splavov [Welding of aluminum alloys]. Moscow, Ruda i metally Publ., 2017. 440 p.
  2. Vologdin E.A. Comparative analysis of tungsten electrodes when submerged ARC welding. Molodezhnyy vestnik IrGTU, 2018, vol. 8, no. 1, pp. 36–41.
  3. Ponomarev K.E., Strelnikov I.V. Choose the brand of tungsten electrodes for welding (review). Svarka i Diagnostika, 2019, no. 1, pp. 32–36.
  4. Shchitsyn Yu.D., Kosolapov Yu.A., Strukov N.N. Energy distribution in the compressed arc when the plasma torch is operated with reverse polarity current. Svarka i Diagnostika, 2010, no. 3, pp. 13–16.
  5. Lenivkin V.A., Dyurgerov N.G., Sagirov Kh.N. Tekhnologicheskie svoystva svarochnoy dugi v zashchitnykh gazakh [Processing properties of welding arc in shielding gases]. Moscow, BMP-PR Publ., 2011. 367 p.
  6. Karkhin V.A. Teplovye protsessy pri svarke [Thermal processes during welding]. Sankt Petersburg, Politekhnicheskiy universitet Publ., 2015. 572 p.
  7. Giedt W.H., Tallerico L.N., Fuerschbach P.W. GTA Welding Efficiency: Calorimetric and Temperature Field Measurements. Welding Journal, 1989, vol. 68, no. 1, pp. S28–S32.
  8. Sidorov V.P., Sovetkin D.E., Melzitdinova A.V. Effective power of direct polarity arc with non-consumable electrode. Vestnik Permskogo natsionalnogo issledovatelskogo politekhnicheskogo universiteta. Mashinostroenie, materialovedenie, 2020, vol. 22, no. 2, pp. 5–11.
  9. Savinov A.V., Lapin I.E., Lysak V.I. Dugovaya svarka neplavyashchimsya elektrodom [Arc welding with a non-consumable electrode]. Moscow, Mashinostroenie Publ., 2011. 477 p.
  10. Dorodnov A.M., Kozlov N.P., Pomelov Ya.A. About the electron cooling effect at the thermionic arc cathode. Teplofizika vysokikh temperatur, 1973, vol. 11, no. 4, pp. 724–727. URL: mathnet.ru/links/004c037a168cdc3e179745c45ee5c78a/tvt9873.pdf.
  11. Atroshchenko V.V., Bychkov V.M., Selivanov A.S. Experimental determination of current carrying capacity for lanthanide tungsten electrodes. Vestnik Ufimskogo gosudarstvennogo aviatsionnogo tekhnicheskogo universiteta, 2009, vol. 13, no. 1, pp. 161–165.
  12. Savinov A.V. Resistance of nonmelting electrodes at argon-arc welding at alternating current. Izvestiya Volgogradskogo gosudarstvennogo tekhnicheskogo universiteta, 2013, no. 6, pp. 142–147.
  13. Pan J.J., Hu S.S., Yang L.J., Li H. Simulation and analysis of heat transfer and fluid flow characteristics of variable polarity GTAW process based on a tungsten-arc-specimen coupled model. International Journal of Heat and Mass Transfer, 2016, vol. 96, pp. 346–352. doi: 10.1016/j.ijheatmasstransfer.2016.01.014.
  14. Tarasov N.M., Gorlov A.K., Lashko S.N. Numerical modelling of the process of formation of a molten metal drop at the tip of a consumable electrode. Avtomaticheskaya svarka, 2002, no. 6, pp. 24–27. URL: patonpublishinghouse.com/as/pdf/2002/as200206all.pdf.
  15. Suvorov S.V., Vakhrushev A.V. Numerical modeling of the process of dropship of electrode at welding. Khimicheskaya fizika i mezoskopiya, 2018, vol. 20, no. 3, pp. 335–341.
  16. Nerovnyy V.M., ed. Teoriya svarochnykh protsessov [Theory of welding processes]. Moscow, MGTY im. N.E. Baymana Publ., 2007. 752 p.
  17. Sidorov V.P., Melzitdinova A.V. Raschet tochnosti parametrov argonodugovoy i kontaktnoy svarki [Calculation of parameter accuracy of argonarc and contact welding]. Tolyatti, Anna Publ., 2018. 252 p.
  18. Zinovev V.E. Teplofizicheskie svoystva metallov pri vysokikh temperaturakh [Heat-transfer properties of metals at high temperatures]. Moscow, Metallurgiya Publ., 1989. 384 p.
  19. Lassner E., Schubert W.D. Tungsten: properties, chemistry, technology of the element, alloys, and chemical compounds. Boston, Springer Science & Business Media Publ., 2012. 422 p.
  20. Tolias P. Analytical expressions for thermophysical properties of solid and liquid tungsten relevant for fusion applications. Nuclear materials and energy, 2017, vol. 13, pp. 42–57. doi: 10.1016/j.nme.2017.08.002.
  21. Drayper N.R., Smit G. Prikladnoy regressionnyy analiz [Applied Regression Analysis]. 3rd izd. Moscow, Dialektika Publ., 2017. 912 p.
  22. Tarasik V.P. Matematicheskoe modelirovanie tekhnicheskikh system [Mathematic simulation of engineering systems]. Moscow, INFRA-M Publ., 2020. 592 p.
  23. Sidorov V.P., Sovetkin D.E., Korotkova G.M. Admissible currents to tungsten arc electrode with multipolar current pulses. Vestnik Permskogo natsionalnogo issledovatelskogo politekhnicheskogo universiteta. Mashinostroenie, materialovedenie, 2020, vol. 22, no. 4, pp. 5–12.
  24. Sidorov V.P., Sovetkin D.E. Effective power of bipolar argon arc with a tungsten electrode for aluminum welding. Vestnik Permskogo natsionalnogo issledovatelskogo politekhnicheskogo universiteta. Mashinostroenie, materialovedenie, 2021, vol. 23, no. 1, pp. 5–12.
  25. Wang L.L., Wei J.H., Wang Z.M. Numerical and experimental investigations of variable polarity gas tungsten arc welding. International Journal of Advanced Manufacturing Technology, 2018, vol. 95, no. 5-8, pp. 2421–2428. doi: 10.1007/s00170-017-1387-6.
  26. Sidorov V.P., Melzitdinova A.V., Sovetkin D.E. Requirements for the arc welding parameters accuracy of a butt joint on an aluminum alloy. Vestnik Permskogo natsionalnogo issledovatelskogo politekhnicheskogo universiteta. Mashinostroenie, materialovedenie, 2021, vol. 23, no. 3, pp. 66–74.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c)



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies