Use of digital twins for mathematical modeling of ultrasonic drilling of titanium blanks


Cite item

Full Text

Abstract

The paper considers the creation and research of a virtual prototype of titanium blanks drilling using the Lagrange and Galerkin method. The developed finite-element models are designed to study the process of mechanical treatment and optimize technological cutting parameters. The paper presents the results of computational investigation of titanium blanks drilling using mathematical modeling programs, which allow complete simulating operating procedures in a computer (digital twin). As a program to simulate the process of removing the allowance from a titanium workpiece, the authors used a multipurpose software product of finite-element modeling and analysis of highly-linear dynamic processes using various Ls-DYNA time integration schemes. The application of the Galerkin method allows adequately describing the drilling process with the introduction of the ultrasonic field energy into a treatment zone, can significantly reduce the duration of experimental research and evaluates the influence of the cutting mode elements and the tool design parameters on the power and energy aspects of the formation of new machine parts surfaces. Both methods are applicable to create various processes of mechanical treatment, however, the Lagrange method is less sensitive to the ultrasonic field energy. The introduction of the ultrasonic field energy into the drilling zone of workpieces made of hard-processing titanium alloys can significantly reduce energy costs. As a result of the simulation, the authors obtained a calculation file containing the simulation process, the solution of which visually reflects the drilling process of a titanium workpiece in a real-life setting with the removal of chips. However, for complete verification of numerical study results, it is necessary to carry out an experimental check and make adjustments to the calculated data.

About the authors

Kirill S. Savelyev

Ulyanovsk State Technical University, Ulyanovsk (Russia)

Email: fake@neicon.ru
ORCID iD: 0000-0002-0473-4699

postgraduate student of Chair “Innovative Technologies in Mechanical Engineering”

Россия

Maksim V. Ilyushkin

Ulyanovsk Research Institute of Aviation Technology and Production Organization, Ulyanovsk (Russia)

Email: fake@neicon.ru
ORCID iD: 0000-0002-3335-728X

PhD (Engineering), Deputy Director

Россия

Evgeniy S. Kiselev

Ulyanovsk State Technical University, Ulyanovsk (Russia)

Author for correspondence.
Email: kec.ulstu@mail.ru
ORCID iD: 0000-0002-1745-9016

Doctor of Sciences (Engineering), Professor, Director of Regional Technological Center for Industrial Internet in Mechanical Engineering

Россия

References

  1. Malyshev V.I. Stanovlenie i razvitie nauki o rezanii materialov [The formation and development of the materials cutting science]. Tolyatti, TGU Publ., 2015. 508 p.
  2. Poduraev V.N. Rezanie trudnoobrabatyvaemykh materialov [Cutting of hard-processing materials]. Moscow, Mashinostroenie Publ., 1974. 252 p.
  3. Tsvikker U. Titan i ego splavy [Titanium and its alloys]. Moscow, Metallurgiya Publ., 1979. 362 p.
  4. Vijayabaskar P., Hynes N.R.J. Simulation of Friction Stir Drilling Process. AIP Conference Proceedings, 2018, vol. 1953, article number 140109. DOI: https://doi.org/10.1063/1.5033284.
  5. Kirsanov A.R. Metodika otsenki povrezhdaemosti GTD na etapakh ego so-zdaniya, izgotovleniya i ekspluatatsii ot porazhayushchego vozdeystviya ptits [The technique to evaluate damaging of a gas-turbine engine by the bird destructive effect at the stages of its creation, production and operation]. Diss. kand. tekhn. nauk. Moscow, 2016. 205 p.
  6. Wang P., Wang D. Study on ultrasonic-assisted drilling of Ti6Al4V using 3-flute drill in the finite element simulation. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2020, vol. 234, no. 7, pp. 1298–1310. DOI: https://doi.org/10.1177/0954406219893001.
  7. Su Y., Chen D.D., Gong L. 3D Finite Element Analysis of Drilling of Ti-6Al-4V Alloy. Proceedings of the International Conference on Computer Information Systems and Industrial Applications, 2015, pp. 907–911. DOI: https://doi.org/10.2991/cisia-15.2015.245.
  8. Abdelhafeez A.M., Soo S.L., Aspinwall D., Dowson A., Arnold D. A Coupled Eulerian Lagrangian Finite Element Model of Drilling Titanium and Aluminium Alloys. SAE International Journal of Aerospace, 2016, vol. 9, no. 1, pp. 198–207. DOI: https://doi.org/10.4271/2016-01-2126.
  9. Dudarev A.S., Ilyushkin M.V., Nikolaev I.F. Modeling the drilling process of layered material in program LS-DYNA. Vestnik Permskogo natsionalnogo issledovatelskogo politekhnicheskogo universiteta. Mashinostroenie, materialovedenie, 2020, vol. 22, no. 2, pp. 64–74.
  10. Dudarev A., Volegov K., Kurzanov G. Rheonomic phenomenon shrinkage of holes drilled in fibreglass and carbon fibre-reinforced polymer composites. Mechanics of Advanced Materials and Modern Processes, 2017, vol. 3, no. 1, article number 17. DOI: https://doi.org/10.1186/s40759-017-0033-1.
  11. Kottrell A.X. Dislokatsii i plasticheskoe techenie v kristallakh [Dislocations and plastic flow in crystals]. Moscow, Metallurgizdat Publ., 1958. 390 p.
  12. Kumabe D. Vibratsionnoe rezanie [Vibration cutting]. Moscow, Mashinostroenie Publ., 1985. 424 p.
  13. Kiselev E.S., Malyshev V.I., Kovalnogov V.N. Novye ultrazvukovye tekhnologii izgotovleniya detaley mashin [New ultrasonic technologies of machine parts production]. Tolyatti, TGU Publ., 2014. 327 p.
  14. Kiselev E.S., Blagovskiy O.V. Upravlenie formirovaniem ostatochnykh napryazheniy pri izgotovlenii otvetstvennykh detaley [The control of formation of residual stresses when producing essential parts]. Sankt Petersburg, Lan Publ., 2020. 140 p.
  15. Percin M., Aslantas K., Ucun I., Kaynak Y., Cicek A. Micro-drilling of Ti–6Al–4V alloy: the effects of cooling/lubricating. Precision Engineering, 2016, vol. 45, pp. 450–462. doi: 10.1016/j.precisioneng.2016.02.015.
  16. Li Z., Zhang D., Jiang X., Qin W., Geng D. Study on rotary ultrasonic-assisted drilling of titanium alloys (Ti6Al4V) using 8-facet drill under no cooling condition. The International Journal of Advanced Manufacturing Technology, 2017, vol. 90, no. 9-12, pp. 3249–3264. DOI: https://doi.org/10.1007/s00170-016-9593-1.
  17. Wang T., Liu Z., Qiu Y., Feng Y., Han X. Removal Mechanism of Titanium Alloy Material in Ultrasound Vibration Drilling. Materials Science Forum, 2020, vol. 993, pp. 3–11. DOI: https://doi.org/10.4028/www.scientific.net/MSF.993.3.
  18. Lu Danni. Study on Ultrasonic Vibration Boring Technology of Difficult-to-machine Materials (TC4) [D]. Xi'an, Xi'an Shiyou University Publ., 2018. 241 p.
  19. Wang T., Liu X., Liu Z., Liu Y., Zhang Y., Wang Z. ANSYS is used on drilling Inner Blind Hole on Deep Hole. Wireless Personal Communications, 2018, vol. 103, no. 1, pp. 1077–1088. DOI: https://doi.org/10.1007/s11277-018-5497-8.
  20. Liang W., Xu J., Ren W., Yu Z., Liu Q., Yu H. Experimental Study on Ultrasonic Vibration Assisted Drilling of Ti-6Al-4V at Different Amplitudes. 2019 IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale, 3M-NANO, 2019, pp. 20–23. doi: 10.1109/3M-NANO46308.2019.8947411.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c)



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies